Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor
Reexamination Certificate
2000-11-30
2003-12-09
Porta, David (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
With or including a luminophor
Reexamination Certificate
active
06661012
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to an X-ray detector which includes a sensor matrix and a scintillator arrangement.
X-ray detectors are employed for converting X-rays into light and/or into detectable charge carriers.
The X-rays emitted by an X-ray source in computed tomography (CT) systems and other imaging X-ray systems penetrate a patient to be examined and is attenuated in conformity with the varying density and chemical composition of the tissue or bone to be examined. The X-rays are converted into light in a scintillating material in the X-ray detector. The X-ray detector is typically composed of an anti-scatter grid, a scintillator arrangement which is situated therebelow and a sensor matrix which is situated therebelow again. The sensor matrix consists of a multitude of light-sensitive sensors, a single sensor also being referred to as a detector element or a channel. Exposure of the X-ray detector to X-rays, causes scattered X-ray photons and scattered radiation in the visible wavelength range, thus giving rise to crosstalk between neighboring detector elements or channels. In order to reduce such crosstalk that falsifies the primary X-ray image to be formed, the X-rays are made to pass through an anti-scatter grid which is focused onto the focus of the X-ray source.
It is thus achieved that the detection of the X-ray photons always concerns only the X-ray photons that are characteristic of the attenuation of the irradiated object.
In order to reduce the crosstalk component of the overall signal even further, the scintillator arrangement, being enclosed by light-reflecting external layers, is additionally segmented by X-ray absorbing shutters which are known as separators, so that scattered radiation (visible radiation or X-rays) that is incident at an angle is absorbed and does not reach the neighboring detector element. For conventional single-line detectors such separators are usually constructed as white epoxy resin layers or shutters of a black metal (Pb, WO, MO) that are coated so as to be reflective (TiO
2
). For X-ray detectors with integrated electronic circuitry the metal inserts offer a further advantage, that is, protection of the underlying semiconductor structures against X-rays.
WO 98/58389 describes an arrangement for the manufacture of large-area two-dimensional grids. A grid is then formed by the stacking of metal layers in which holes are etched. The openings of the resultant grid can be filled with phosphor or another scintillator material. The large-area grids are realized by way of puzzle-like connection of a plurality of sub-grids. The lithographic manufacture of the metal layer enables a high precision to be achieved. The superposed metal layers are fixed by means of pins that are to be inserted into appropriate holes.
Such a grid is manufactured with a great expenditure. The manufacture of each metal layer requires its own mask. Moreover, the insertion of scintillator blocks into grids thus constructed is intricate, because on the one hand the dimensions of the described grid are aimed at achieving a very high resolution while on the other hand the metal layers have steep edges impeding the insertion of metal blocks.
OBJECT OF THE INVENTION
It is an object of the invention to provide an X-ray detector in which the crosstalk of the scattered radiation is reduced in an X-ray detector which is segmented in two directions in space, and can be manufactured with a high precision and in large numbers at an acceptable cost. It is also an object of the invention to provide a scintillator in which the underlying semiconductor structures are protected against X-rays.
The object is achieved in that there are provided a plurality of layers of wire elements that are spaced apart, are arranged so as to receive scintillators at least partly between the wire elements.
To this end, first a grid is formed from layers of wire, while using a kind of weaving technique. The wire is to be selected from metals having a high X-ray absorption, for example molybdenum or tungsten. A plurality of wire elements of corresponding length are arranged in a layer. A layer to be arranged on top thereof is preferably oriented at an angle of 90° relative to the wire elements of the underlying layer. Repeated superposition of such wire element layers yields a grid which is segmented in two directions in space.
In a preferred embodiment of the invention a respective scintillator element is inserted in each of the resultant holes.
Because all holes have the same dimensions, scintillator elements that can be pressed, for example, into these holes can be manufactured in a simple and inexpensive manner. This results in a scintillator arrangement in which the individual detector elements of the underlying sensor matrix are separated from one another by the wire elements.
This type of scintillator arrangement can be realized in many sizes, the scintillator arrangement nevertheless maintaining a high stability. The scintillator arrangement can be adapted to curvatures as they occur, for example in the case of CT arms.
Because of the small height of the scintillator arrangement it is not absolutely necessary to focus the grid thus formed onto the focus of a radiation source.
A combined anti-scatter grid and scintillator arrangement is obtained by manufacturing a grid of correspondingly larger dimensions from wire elements. It is then useful to focus the grid onto the focus of the radiation source. To this end, the distance between the wire elements in the successive layers is varied in conformity with the radiation angle. Thus, the spacing of the wire elements in the upper layers of the grid must be smaller than the spacing of the wire elements in the lower layers of the grid. In this context the terms upper and lower relate to the direction of incidence of the X-rays. This means that the layer which is arranged nearest to the radiation source has the smallest spacing of the wire elements and that the layer situated furthest from the radiation source, or nearest to the sensor matrix, has the largest spacing of the wire elements. The geometrical shape of such a grid opening is that of a cone having a square base.
As described above, scintillator blocks or scintillator elements are inserted into the lower part of the grid thus formed. This results in a combined grid which, in conjunction with the underlying sensor matrix, forms an X-ray detector of flexible dimensions that can be manufactured at low costs. The wire elements can be arranged so as to form a grid according to the invention with great precision.
The wire elements can also advantageously be made of a synthetic material containing substances absorbing X-rays. This woven grid, or the layers with wire elements, can also be manufactured by means of an injection molding process. The wire preferably has a round cross-section of, for example approximately 100 &mgr;m, but any other available cross-section can also be used.
The grid structure dimension of the present embodiment is assumed to be approximately 1.5 mm×1.5 mm. Because of the small height of such a scintillator arrangement focusing is not necessary for the time being, but can also be realized. The grid for the scintillator arrangement, or also a grid combined with an anti-scatter grid, may comprise plane or slightly curved opening sides and hence can be used for or adapted to all known detector techniques. A typical height of such a scintillator arrangement is approximately 4 mm, so that a significantly lower building height is required in comparison with an anti-scatter grid. Scintillator elements cut or pressed so as to be shaped as small cubes are inserted into the grid openings. The dimensions are, for example 1.4 mm×1.4 mm×4 mm. Using these dimensions the precision of the structure is determined by the grid. After the insertion of the scintillator elements, the grid is provided with a white light-reflecting adhesive or lacquer, for example epoxy resin. The majority of the surfaces of the wire elements will thus reflect; the reflection co
Lauter Josef
Morales Serrano Francisco
Schneider Stefan
Such Olaf
Wieczorek Herfried Karl
Koninklijke Philips Electronics , N.V.
Lee Shun
Porta David
Vodopia John
LandOfFree
X-ray detector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with X-ray detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and X-ray detector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3174504