Wrap spring clutch

192 clutches and power-stop control – Clutches – Operators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S035000, C192S08100C

Reexamination Certificate

active

06247569

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to a wrap spring clutch and more particularly to improvements in the design of a wrap spring clutch to reduce cost and improve consistency of clutch assembly and performance.
BACKGROUND OF THE INVENTION
Wrap spring clutches are well known in a variety of forms and are used in a variety of applications. The basic operation of many wrap spring clutch designs involves utilizing a spring coil surrounding two shafts to transfer torque from one shaft to the other. Commonly the spring coil is fixed on one end to one of the shafts. When the clutch is activated, the unfixed end of the coil spring attaches to the other shaft and spins until the spring is wrapped down onto both shafts and torque is then transmitted from one shaft to the other. The clutch may be activated by various methods, including the use of an electromechanical switch.
It is known that the time between the activation of the clutch and the binding of the spring in these designs is dependent upon the distance between the inner surface of the spring coil and the shafts. Variations in the diameter of the spring coil can result in undesirable variations in the wrap spring clutch performance. In order to prevent these variations, it is known that the spring coil may be manufactured to tight tolerances. While manufacturing the spring coil to tight tolerances does improve the wrap spring clutch performance, it adds undesirable cost to the wrap spring clutch. It is also known that the inner diameter of the spring coil can be bored out after manufacture to minimize variations. This not only adds additional cost to the manufacture of the wrap spring clutch but it adds additional manufacturing steps as well. It would be highly desirable to be able to reduce the variation in wrap spring clutch performance without the costs associated with improved spring coil manufacturing.
Variations in spring coil diameter can lead to other manufacturing difficulties in wrap spring clutch production. Variations in spring coil diameter can result in variations in the position of the end tabs of the spring coil. Variation in end tab positions makes assembly of the wrap spring clutch difficult and costly. Variation in end tab position may be minimized by manufacturing the spring coil to tight tolerances. Tight tolerances, however, are undesirable since they add to the manufacturing cost of the wrap spring clutch. One known method of compensating for variations in end tab placement, is by manufacturing multiple attachment locations for the spring coil within the clutch assembly. This is a costly and undesirable solution. It would be desirable to have a design that reduced the variation in end tab placement such that design and assembly of the wrap spring clutch was simplified and costs were reduced.
The wrap spring clutch is a highly desirable design for use in many applications. The wrap spring clutch allows smooth engagement and has quick release properties that provide a valuable safety mechanism when used in applications such as automotive cruise control. A design is therefore needed that retains the positive characteristics of the wrap spring clutch while eliminating the deficiencies in manufacturing, cost, assembly, and performance associated with known designs.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a wrap spring clutch that retains the positive characteristics of known wrap spring clutches while reducing the deficiencies in manufacturing, cost, assembly, and performance associated with known designs.
In accordance with the objects of this invention, a wrap spring clutch is provided. The wrap spring clutch includes an input side rotating member and an output side rotating member. The wrap spring clutch includes a pole piece with a cylindrical center bore which houses a coil spring. One end of the coil spring is attached to the output side rotating member and the other end is attached to the pole piece. The input side rotating member and the output side rotating member pass through the center axis of the coil spring. A endframe is attached to input side rotating member and surrounds the pole piece and coil spring.
An excitation coil is magnetically coupled to the pole piece. When the clutch is activated, a current is passed through the excitation coil and a magnetic field is produced around the pole piece. The pole piece becomes magnetically attached to the endframe and begins rotating with the input side rotating member. As the pole piece begins to rotate, the coil spring begins to wind down onto the input side rotating member and the output side rotating member. When the coil spring tightens, the torque of the input side rotating member is transferred to the output side rotating member.
The outer diameter of the coil spring is equal to or greater than the diameter of the cylindrical center bore in the pole piece. In this way, the cylindrical center bore controls the diameter of the coil spring. The diameter of the coil spring is therefore controlled without the need for complex coil spring machining.


REFERENCES:
patent: 4846324 (1989-07-01), Ohsawa
patent: 5099974 (1992-03-01), Spechko
patent: 5127502 (1992-07-01), Billings

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wrap spring clutch does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wrap spring clutch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wrap spring clutch will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2472842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.