Worm driving a servo actuator with spring return and rotary...

Valves and valve actuation – Electrically actuated valve – Rotary electric actuator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C251S069000, C251S249500

Reexamination Certificate

active

06276664

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
MICROFICHE APPENDIX
Not Applicable
BACKGROUND OF THE INVENTION
The present invention relates to worm driven servo actuated valves employing same of the type having a rotary valve member such as a blade, paddle or butterfly which is employed for directing flow of fluid or sonic pressure pulses in a passage such as the air inlet passage of an engine. Worm driven servo actuators are employed for numerous control purposes and arc particularly suitable for rotary valves. Valves of this type are employed as engine air throttles, communication, or diverter valves within the engine inlet manifold for directing flow or pulses to a desired passage during engine operation depending upon the conditions under which the engine is operating at the time. Heretofore, servo operated rotary valves for air flow control or communication in a passage, such as an engine inlet passage have utilized speed reducers or gear trains driven by a low voltage high RPM sub-fractional horsepower or low wattage motor. It has been found desirable to use such a small low wattage motor to reduce the cost and bulk of the motor drive particularly where the valve is to be mounted as a throttle actuator on the engine air inlet or through an aperture in the engine inlet manifold for use as a diverter valve.
Where a servo motor operated valve is employed for engine air throttle applications or as a manifold air diverter valve, it has been found difficult to provide adequate torque with a small low wattage motor to insure proper valve movement and to simultaneously provide the desired speed of response of the valve to changes in the electrical control signal to the motor. This has proven to be particularly troublesome for a servo operated motor for throttle actuation in conjunction with cruise control operation of the engine on a motor vehicle.
In providing a servo motor operated air flow valve for either an engine air throttle or inlet manifold diverter valve, it has been desired to use a worm and gear arrangement for speed reduction, torque multiplication and silence of operation. However, in the event of failure of the servo motor with the valve in an operating position it has been found extremely difficult to provide a spring return of the valve where a worm and gear drive arrangement has been employed.
Known techniques for providing a spring return of an engine air throttle valve having a worm and gear operated servo motor drive are shown and described in U.S. Pat. No. 5,950,765 issued in the name of J. E. Pearson, et al. wherein a worm and gear arrangement provides for engagement of a sector gear when a pinion coaxial with the worm has reached the end of a sector face gear with which the pinion is engaged. However, the system employed in the aforementioned Pearson, et al. patent has a multiplicity of gears, is complicated and the spring return is provided on the output sector gear and thus requires a relatively high spring rate to provide the return of the valve against the overall reduction ratio. The relatively high spring rate of the sector gear return spring results in increased power requirement for the drive motor and has rendered this arrangement not only relatively high in cost for mass production but also bulky and heavy for the engine air throttle applications.
Other known arrangements include the throttle servo actuator described in U.S. Pat. No. 5,138,211 to Haefner, et al. wherein a ball-detent actuated clutch is disengaged upon de-energization of the motor. In the aforesaid known servo motor operated valve employing a clutch, the clutch is described as unclutched by de-energization of a solenoid. However, this arrangement also is complicated and requires a multiplicity of parts, is difficult to assemble and is dependent upon proper release of the clutch solenoid to permit the spring to return the valve. In the aforesaid arrangement of Haefner, et al., motor failure without separate release of the clutch solenoid would not allow the return spring to return the throttle. Thus, it has been desired to find a low cost, simple and reliable way or means for operating an air flow valve with a servo motor utilizing a worm drive and to provide for spring return of the valve in the event of motor failure in any position without requiring a high torque motor and a multiplicity of gears.
BRIEF SUMMARY OF THE INVENTION
The present invention provides a worm driven servo actuator and particularly such an actuator connected to a rotary valve which is assembled as a unit and installed in a passage for controlling the flow of fluid, such as air in an engine inlet, either for a throttle application or in the manifold as a diverter valve. The present invention uses a low wattage, high RPM motor driving a worm which engages an output sector gear connected to the rotary output member which may be a valve member. In the illustrated arrangement, the motor drives the worm through an intermediate gear; and, the worm has a return spring preferably in the form of a coil spring disposed coaxially with the worm. The worm driven servo motor actuator arrangement of the present invention enables the return spring to drive the worm a sufficient number of revolutions to return the output sector gear to an initial position should the motor fail at any point during operation. The valve embodiment employing the servo actuator arrangement of the present invention has the greater portion of the speed reduction occurring in the engagement of the worm with the output sector gear and thus minimizes stiffness required of the return spring and the torque requirement of the motor thereby permitting a low cost high RPM low wattage motor to be employed. This arrangement minimizes the size and bulk of the servo motor drive unit and facilitates installation of the drive on the rotary valve.


REFERENCES:
patent: 4533114 (1985-08-01), Cory et al.
patent: 4546787 (1985-10-01), Meyers et al.
patent: 4616528 (1986-10-01), Malinski et al.
patent: 4686863 (1987-08-01), Inoue et al.
patent: 4754949 (1988-07-01), Fukamachi
patent: 5201291 (1993-04-01), Katoh et al.
patent: 5255891 (1993-10-01), Pearson et al.
patent: 5775292 (1998-07-01), Seeger
patent: 5950765 (1999-09-01), Pearson et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Worm driving a servo actuator with spring return and rotary... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Worm driving a servo actuator with spring return and rotary..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Worm driving a servo actuator with spring return and rotary... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2509209

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.