Working robot for heat exchangers and method of operating...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S253000, C700S255000, C700S258000, C700S259000, C700S260000, C700S261000, C700S264000, C700S900000, C219S411000, C219S405000, C165S005000, C165S011200, C165S076000, C165S095000

Reexamination Certificate

active

06278903

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a working robot for heat exchangers, adapted to effect cleaning or flaw detection test on the many water tubes of a condenser or a heat exchanger which water tubes are connected between and open through the tube sheets of two water chambers, and it also relates to a method of operating said working robot.
TECHNICAL BACKGROUND
As for known working devices for condensers, one is suggested in Japanese Patent Unexamined Publication Heisei 7-229695, which comprises guide rails extending along the surface of the tube sheet in the water chamber, and a working robot adapted to move while being guided along said guide rails. Another is suggested in Japanese Patent Unexamined Laid-open Applications No. 51-10201 and No. 3-199802, in which a robot body having a plurality of legs inserted in the openings in narrow tubes is provided with a working arm, said robot being moved along the tube sheet.
In this connection, although manholes formed in the water chambers of condensers have recently tended to increase in size, conventional manholes are as small as about 500 mm or at most 600 mm in diameter, and it is necessary to carry in components for guide rails and a robot through such manholes. Such conventional robot has its travel mechanism section and working mechanism section separately constructed, so that, though simplified in mechanism, the robot has not a few components and becomes large-sized, making it necessary to disassemble the robot before the latter can be carried into or out of the water chamber through the manhole. Therefore, there has been a problem that the operating time required for assembling and disassembling the robot in the water chamber and carrying it in and out increases.
The present invention is intended to solve said problems and provide a compact working robot for heat exchangers and a method of operating the same.
DISCLOSURE OF THE INVENTION
A working robot for heat exchangers described in Claim
1
comprises a robot body movable along a tube sheet through which a number of narrow tubes open, at least four combined-use arms disposed on the outer periphery of said robot body such that they can be extended and retracted toward and away from the outer periphery along said tube sheet, and a working device installed at the front end of each of said combined-use arms, said working device being provided with a cleaning means consisting essentially of a cleaning tool inserting mechanism for inserting a cleaning tool into a narrow tube and a pressure-feed mechanism for moving said cleaning tool in and along a narrow tube by pressurized fluid, and a positioning mechanism for inserting a connecting and fixing tool into a narrow tube to fix said combined-used arm to the narrow tube to position the robot body, said robot including a movement mechanism for moving the robot body by extending and retracting the combined-use arms fixed by said positioning mechanism.
According to the invention as described in Claim
1
, a cleaning operation is effected by the working devices of the combined-use arms upon positioning in which at least three combined-use arms are fixedly connected to the narrow tubes by the positioning mechanisms. Further, the robot body is moved in that the individual combined-use arms are simultaneously driven for extension or retraction. Further, with three combined-use arms fixed to narrow tubes, the remaining combined-use arm is driven, so that the working device is moved from the cleaned narrow tube to the next narrow tube. As compared with the conventional working robot in which the cleaning mechanism and the movement mechanism are separated from each other, therefore, in the present invention the number of members, such as arms, can be reduced, and retraction of the combined-use arms to the robot body makes the robot compact. Thus, carrying into and out of the water chamber is facilitated and the number of preparatory operations, such as assembling and disassembling, is reduced, thereby reducing the operating time.
A working robot for heat exchangers described in Claim
2
comprises a robot body movable along a tube sheet through which a number of narrow tubes open, at least four combined-use arms disposed on the outer periphery of said robot body such that they can be extended and retracted toward and away from the outer periphery along said tube sheet, and a working device installed at the front end of each of said combined-use arms, said working device being provided with a positioning mechanism for inserting a connecting and fixing tool into a narrow tube to fix said combined-used arm to the narrow tube to position the robot body, and a probe inserting mechanism for inserting an inspection probe into a narrow tube and a pressure-feed mechanism for pressure-moving said inserted inspection probe along a narrow tube by pressurized fluid, said robot including a movement mechanism for moving the robot body by extending and retracting the combined-use arms fixed by said positioning mechanism, and a narrow tube inspecting means for inspecting the narrow tube by said inspection probe moved in said narrow tube.
According to the invention as described in Claim
2
, when at least three combined-use arms are positioned by being fixedly connected to narrow tubes by the positioning mechanisms, a narrow tube inspecting operation is performed by the working devices. Further, in that the combined-use arms are simultaneously extended or contracted, the robot body is moved, and with three combined-use arms fixed, the working device of the remaining combined-use arm can be moved from a treated narrow tube to the next narrow tube. Therefore, as compared with a conventional working robot in which the movement mechanism of the robot body is separated from the working mechanism for probe insertion inspection and the like, the number of members can be reduced. Further, in that the combined-use arms are retracted toward the robot body, the robot can be made compact. This makes it possible to facilitate carrying into and out of a water chamber, to reduce the number of preparatory operations such as assembling and disassembling and to reduce the operating time.
A working robot for heat exchangers described Claim
3
is characterized in that said working device in Claim
1
is provided with a cleaning means consisting essentially of a cleaning tool inserting mechanism for inserting a cleaning tool into a narrow tube and a pressure-feed mechanism for moving said cleaning tool in and along the narrow tube by pressurized fluid, and a narrow tube inspecting means for inspecting the narrow tube by said inspection probe being moved in said narrow tube.
According to the invention as described in Claim
3
, in addition to the functions and effects of Claim
1
, insertion and movement of the inspection probe and inspection can be simultaneously effected, ensuring efficient operation.
A working robot for heat exchangers described in Claim
4
, characterized in that in any one of Claims
1
through
3
, at least three but not all of the at least four combined-use arms have their front ends fixed to narrow tubes by the positioning mechanisms of the working devices, in which state these combined-use arms are driven to move the robot body, and in that the remaining one or more combined-use arms are released from the narrow tubes to move their working devices to the next narrow tubes.
According to the invention as described in Claim
4
, four or more combined-use arms and working devices are successively selected and driven such that movement and positioning of the robot body are effected by three combined-use arms and during the positioning, cleaning operation is effected, while the working device of the remaining one or more combined-use arms are moved to the next narrow tube. Therefore, by combining the movement of the robot body and cleaning operation with the movement of the working device in each combined-use arm, cleaning operation can be efficiently effected, greatly reducing the cleaning operation time.
A working robot for heat exchangers d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Working robot for heat exchangers and method of operating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Working robot for heat exchangers and method of operating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Working robot for heat exchangers and method of operating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2479882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.