Wiring structure of an image stabilizer

Photography – Camera shake sensing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C396S054000

Reexamination Certificate

active

06308010

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a wiring structure of an image stabilizer provided in an optical instrument such as a camera, a pair of binoculars or the like, wherein the image stabilizer is provided with an image-stabilizing optical system which is driven to prevent the object image in the optical instrument from shaking due to hand movement.
2. Description of the Related Art
Optical instruments such as cameras, binoculars or the like, which are provided with an image stabilizer having a vibration compensation function are well known. The image stabilizer is provided with an image-stabilizing optical system and operates to compensate the shaking of the object image (hereinafter referred to as “image shake”) in the optical instrument by driving the image-stabilizing optical system in a plane perpendicular to the optical axis thereof. In such a conventional image stabilizer which uses coils and permanent magnets to drive the image-stabilizing optical system, the coils and position detect sensors are fixed to a movable frame which supports the image-stabilizing optical system, so that electrical wires extend from the coils and the position detect sensors.
A flexible printed wiring board is mainly used as the electrical wires. Conventionally, part of the flexible printed wiring board which is positioned adjacent to the movable frame of the image-stabilizing optical system is bent to absorb the deflection stress of the flexible printed wiring board that is caused by the movement of the movable frame.
According to such a conventional structure providing the aforementioned part of the flexible printed wiring board with a mere bent portion to absorb deflection stress, the strong resilient force of the flexible printed wiring board at the bent portion often prevents the movable frame (the image-stabilizing optical system) from moving smoothly. Moreover, since the bent portion of the flexible printed wiring board bulges towards the movable frame, a large space for accommodating the bent portion in the optical instrument provided therein with the image stabilizer is required. This increases the size of the optical instrument.
SUMMARY OF THE INVENTION
The primary object of the present invention is to provide a wiring structure of an image stabilizer which makes it possible to minimize the resilient force of the flexible printed wiring board to reduce the influence of the resilient force on the movement of the image-stabilizing optical system while minimizing the space necessary for disposing the flexible printed wiring board.
To achieve the object mentioned above, according to an aspect of the present invention, a wiring structure of an image stabilizer is provided, including a movable member which supports an image-stabilizing optical system, a cylindrical base which supports the movable member to be movable in a plane perpendicular to an optical axis of the image-stabilizing optical system, a first drive device which drives the movable member in a first direction perpendicular to the optical axis, a second drive device which drives the movable member in a second direction perpendicular to the optical axis, the first direction and second direction being orthogonal to each other, a first electrical element associated with the first drive device and a second electrical element associated with the second drive device which are separately mounted on the movable member being spaced in the circumferential direction about the optical axis, and a flexible printed wiring board, one end and the other end of which are positioned inside and outside of the cylindrical base, respectively. The one end of the flexible printed wiring board is provided with a first wiring strip and a second wiring strip which firstly extend in opposite directions away from each other along the circumferential direction about the optical axis, and subsequently fold back inwardly towards each folded portion of each respective second and first wiring strips, to be connected with the first electrical element and the second electrical element, respectively, after intersecting each other as viewed along the optical axis.
According to this structure, those wiring portions of the first and second wiring strips which extend between the movable member and the cylindrical base become sufficiently long and thus do not bend very much even if the movable member moves to a movable limit position thereof in either the first or second direction. Therefore, the influence of the resilient force of each of those wiring portions on the movable member while it is moving can be made minimal.
Moreover, no bent portion which bulges towards the movable member is formed on either the first or second wiring strip, it is not necessary to secure a large space for disposing the first and second wiring strips. Furthermore, there is no fear that the smooth movement of the movable member be interrupted by a strong resilient force of such a bent portion which bulges towards the movable member.
Preferably, each of the first wiring strip and the second wiring strip includes a S-shaped portion in a vicinity of an intersecting portion thereof so that the first wiring strip and the second wiring strip sidestep each other in the direction of the optical axis, respectively.
Preferably, the cylindrical base includes a peripheral wall which is formed along a circumferential portion thereof. Each of the first wiring strip and the second wiring strip includes an outer strip portion positioned along an outer peripheral surface of the peripheral wall of the cylindrical base, and an inner strip portion which is folded back inwardly to be positioned inside the cylindrical base; and the inner strip portion of the first wiring strip and the inner strip portion of the second wiring strip intersect each other as viewed along the optical axis.
Preferably, the inner strip portion of the first wiring strip includes at least one S-shaped portion which is curved so as to bend in the direction of the optical axis so that the inner strip portion of the second wiring strip sidesteps in the direction of the optical axis; and the inner strip portion of the second wiring strip includes at least one S-shaped portion which is curved so as to bend in the direction of the optical axis so that the inner strip portion of the first wiring strip sidesteps in the direction of the optical axis.
Preferably, a portion of the inner strip portions of the first and second wiring strip, other than the intersecting portion, overlap each other in the radial direction of the cylindrical base.
Preferably, the first drive device includes a first magnet fixed to one of the cylindrical base and the movable member, and a first coil fixed to the other of the cylindrical base and the movable member to face the first magnet. In this case, the second drive device includes a second magnet fixed to the one of the cylindrical base and the movable member, and a second coil fixed to the other of the cylindrical base and the movable member to face the second magnet.
In an embodiment, the first magnet and the second magnet are fixed to the cylindrical base, and the first coil and the second coil are fixed to the movable member to face the first and second magnets, respectively. The first electrical element and the second electrical element include the first coil and the second coil, respectively.
Preferably, the first drive device further includes a first position detector for detecting a variation in position of the movable member relative to the cylindrical base in the first direction, and the second drive device further includes a second position detector for detecting a variation in position of the movable member relative to the cylindrical base in the second direction.
Preferably, the first position detector includes a first light emitter fixed to one of the cylindrical base and the movable member, and a first one-dimensional PSD fixed to the other of the cylindrical base and the movable member, and the second position detector includes a second light emitte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wiring structure of an image stabilizer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wiring structure of an image stabilizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wiring structure of an image stabilizer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.