Communications: electrical – Condition responsive indicating system – With particular system function
Reexamination Certificate
2002-05-10
2004-05-18
Trieu, Van (Department: 2636)
Communications: electrical
Condition responsive indicating system
With particular system function
C340S506000, C340S516000
Reexamination Certificate
active
06737967
ABSTRACT:
BACKGROUND OF THE INVENTION
Typical building fire alarm systems include a number of fire detection devices located throughout a building. The devices include smoke detectors, heat sensors, pull stations and like devices. Normally, these devices are connected in loops and are monitored for alarm and trouble conditions at a central control panel. The loops are distributed throughout zones of an industrial plant, office or residential building.
Alarm and/or trouble indicators are located at the control panel to indicate in which zone the alarm and/or trouble condition is located. The alarm or trouble indicators may be LEDs and/or an alphanumeric display. A yellow LED usually indicates a trouble condition and a red LED usually indicates an alarm condition. A trouble condition may be caused by the removal of a device, faulty system wiring and the like. A tone alarm may be generated at the control panel to announce that a trouble condition has been detected. The tone alarm can be silenced by an operator authorized access to the control panel. During an alarm condition, audible devices are sounded throughout the zones of the building. These devices may include horns, bells and like devices. Light strobes may also be located throughout the building to provide a visual alarm.
A walk through test of each device verifies that each device is connected to the system in its assigned location. Before performing a walk through test, a human tester places the control panel in a test mode. When performing a walk through test, the tester places a device in an alarm or trouble condition. The control panel receives a signal from a sensing device identifying the location of the device and whether there is an alarm or trouble condition. The tester then must communicate with the control panel operator as to whether the alarm or trouble condition was properly detected by the control panel and whether the device is located in the proper zone. A communications channel is setup between the tester and a control panel operator. The communication channel may be setup through a pair of two-way radios, cellular phones or like devices. The control panel operator then resets the alarm or trouble condition at the control panel and the tester moves onto the next device to be tested.
A single tester walk through test such as presented in U.S. Pat. No. 4,725,818, allows the tester to place a device in an alarm or trouble condition. In test mode, the control panel senses the location of the device and whether there is an alarm or trouble condition. The control panel then audibly sounds a code, associated with the devices address, throughout the audible devices located in the system or zone. The tester listens to the code and verifies the location of the device by matching the code to a list of device addresses for all devices in the system. The control panel automatically resets the tripped device so the tester can move to the next device to test.
SUMMARY OF THE INVENTION
The single human tester method of verifying system installation and troubleshooting alarm devices can be very disruptive, not only to the tester but to the building occupants. This is especially important in buildings which do not typically have an unoccupied period during which testing can be preformed, such as hospitals. Also, only the device address is communicated to the tester and not the device location. Therefore, even though the system has the capability of conducting the verification with one tester, many tests are conducted with two people, a tester and control panel operator.
In accordance with the present invention there is provided a method and system of walk through testing a fire alarm system without disrupting the building occupants.
This result is achieved by setting up a private communications channel between the control panel and the tester. The tester then triggers a test condition in a device. The control panel detects the address of the device and automatically returns to the tester, over the communications channel, an indication of a location of the device. The indication may be a code associated with the device address which can be matched to location on a list. However, it is preferred that the indication be a direct identification of location such as presented in a label associated with the device address at the control panel.
The location of the devices may be a label which may be converted to a voice stream or textual message, which is transmitted to the tester over the communication channel. In response to the label, the tester can transmit over the communications channel, a response indicating the location of the device. The response may be stored in a storage device, and the response may be associated to the device tested. The response can be either a voice stream or textual message and the storage device may be a computer. The test condition may be an alarm or trouble condition.
An address of the device can also be returned to the tester. The tester transmits over the communications channel the response to the address of the device. The response is then stored in a storage device, and the response may be associated to the device tested. The response can be either a voice stream or textual message and the storage device may be a computer.
To setup a communications channel between the control panel and the tester, a computer may be connected to the control panel. A first communications device may be connected to the computer and a second communications device may be connected to the first communications device through a wireless connection. The communications device can be a two-way radio, cellular phone or pager interface.
REFERENCES:
patent: 4141007 (1979-02-01), Kavasilios et al.
patent: 4148019 (1979-04-01), Durkee
patent: 4412211 (1983-10-01), Lautzenheiser et al.
patent: 4427974 (1984-01-01), Sheahan
patent: 4459582 (1984-07-01), Sheahan et al.
patent: 4538138 (1985-08-01), Harvey et al.
patent: 4652859 (1987-03-01), Wienen
patent: 4725818 (1988-02-01), Motyka et al.
patent: 5686885 (1997-11-01), Bergman
patent: 6313744 (2001-11-01), Capowski et al.
patent: 6326880 (2001-12-01), Tice
Hamilton Brook Smith & Reynolds P.C.
SimplexGrinnell LP
Trieu Van
LandOfFree
Wireless walk through test system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wireless walk through test system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless walk through test system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3225915