Telecommunications – Carrier wave repeater or relay system – Two separate way transmission
Reexamination Certificate
1998-01-17
2001-02-13
Urban, Edward F. (Department: 2746)
Telecommunications
Carrier wave repeater or relay system
Two separate way transmission
C455S019000, C455S561000
Reexamination Certificate
active
06188875
ABSTRACT:
BACKGROUND OF THE INVENTION
(a) Field of the Invention
This invention relates to a wireless telephone system and more particularly, but not by way of limitation, to a system for expanding the geographic coverage of a cell site operating signal foot-print. More specifically, the system is designed to reproduce a wireless base station's signal foot-print and introduce the cloned foot-print into new geographical areas to the benefit of cellular telephone users.
(b) Discussion of Prior Art
In today's wireless telephone market there are several units which produce coverage other than a wireless base station site. The units are used for expanding wireless signal coverage and are described as follows:
Fiber optic micro cell site: This type of site produces its own frequencies that are different from adjacent cell sites. Each sites primary function is to introduce low-power cellular signal footprints into small geographical areas that don't have a need for a high-power signal footprint.
Bi-directional amplifier: This type of unit re-radiates operating frequencies at a composite output power of 3 watts maximum. This means that multiple carriers are reduced to powers in a milli-watt range.
Cell extender: This unit is limited to communicating only to a donor cell. The cell extender can produce equal power but operates at different frequencies and is limited to a maximum of 10 channels. Also, the cell extender ties up channel banks within the cellular base station, making it a very inefficient operating system.
In U.S. Pat. No. 5,187,806 to Johnson et al. an apparatus and method for expanding cellular system capacity is disclosed. This system uses a cell site transceiver and a remote site transceiver to extend a cell site to a remote location within a geographic sector. The patents cited in U.S. Pat. No. 5,187,806 are incorporated herein by reference.
None of the above mentioned cellular systems provide a powerful, compact and easily transportable system that reproduces the same signal magnitude of its donor site and does not require the need to use channel banks. The subject invention speaks to adjacent cell sites as if it was a real, full-blown cell site itself. The adjacent cell sites don't know or see any difference in the cloning unit.
SUMMARY OF THE INVENTION
In view of the foregoing, it is a primary object of the subject invention to provide a wireless telephone system which is used for reproducing a wireless base station signal and introducing the reproduced signal in a new geographical area.
Another object of the invention is to provide a system that reproduces or clones a full, high power operating cell site or cell unit of the same electromagnetic magnitude at a greatly reduced cost. The system can also be used to clone itself for providing additional geographical areas covered by a reproduced wireless signal from the base station signal.
Yet another object of the invention is to provide a cell site that can operate up to 300 watts of effective radiated power (ERP) Also the cell site is able to function under any of the current technologies operating today such as Analog, TDMA, CDMA and FLEX.
Still another object of the subject wireless system is to provide a cost-effective alternative to building an expensive full cell site. The system produces a broad signal footprint giving wireless customers solid signal coverage along with reliable service.
Another object is the subject invention operates without radios and combining systems. The system clones the donor cell site signal as a whole. If a donor host site operates on 14 channels, then the subject system will also operate on 14 channels. If the donor host site is expanded to 28 channels, then the subject system will automatically expand itself to 28 channels with only a 3 db loss to the coverage footprint. Unlike a cell extender that is currently limited to hand-offs with its donor, the subject cell reproduction system will hand-off to all adjacent cells and its donor. Because the system is a linear composite system, it can be engineered to handle coverage objectives based on future growth. For example, if a site is designed to cover a town or a given geographical area where the donor cell operates 14 voice channels, then the cloned system can be designed to cover 28 voice channels. This feature will allow a cellular service-engineering group the ability to perform channel expansions without signal loss of the designed system or a need to perform modifications to the cloned system.
A further advantage of the system is the design helps our environment by reducing the need of adding additional large radio towers and large obstructions when expanding cell coverage to new geographic areas.
The subject wireless server system includes a 4 to 10 foot parabolic collector operating typically in a frequency range of 800 to 900 Mhz and with a magnitude inner gain in a range of 14 to 21 dBw. A server antenna is connected to the parabolic collector using matching feedline jumpers to produce a resonant match through the system. The server antenna is designed to provide a “under and over” null to the main lobe of the antenna at a minimum of 40 dBw. The system includes 4 duplexing devices with a bi-directional amplifier which allows 124 dBw of isolation between the collector and the server antenna. Also, the system uses two low-noise amplifiers that are adjustable from 1 to 12 dBw in system gain. Further, the system includes either a 40 watt mini-unit amplifier or a 140 watt full-unit amplifier. Each amplifier is designed not to allow any inter-modulation signal to develop to more than −68 dBw from the amplitude of the main carrier. The amplifiers insure interference free operation. The system also includes lightning arrestors, 50 ohm feedline jumpers and a weather-proof housing if required for storing the system therein. A 110 volt electrical supply is connected to the system plus a 240 volt supply if required.
These and other objects of the present invention will become apparent to those familiar with wireless telephone systems from the following detailed description, showing novel construction, combination, and elements as herein described, and more particularly defined by the appended claims, it being understood that changes in the precise embodiments to the herein disclosed invention are meant to be included as coming within the scope of the claims, except insofar as they may be precluded by the prior art.
REFERENCES:
patent: 4849963 (1989-07-01), Kawano et al.
patent: 4868886 (1989-09-01), Assal et al.
patent: 5168574 (1992-12-01), Gordon
patent: 5187806 (1993-02-01), Johnson et al.
patent: 5548803 (1996-08-01), Evans
Crabtree Edwin H.
Margolis Donald W.
Pizzaro Ramon L.
R.F. Cellutions, LLC
Urban Edward F.
LandOfFree
Wireless telephone server system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wireless telephone server system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless telephone server system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2615154