Wireless system with transmitter having multiple transmit...

Telecommunications – Transmitter – Diversity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S101000, C455S103000, C370S334000, C370S339000, C375S148000, C375S267000

Reexamination Certificate

active

06594473

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
The present embodiments relate to wireless communications systems and, more particularly, to transmitters with multiple transmit antennas used in such systems.
Wireless communications have become very prevalent in business, personal, and other applications, and as a result the technology for such communications continues to advance in various areas. One such advancement includes the use of spread spectrum communications, including that of code division multiple access (“CDMA”) and wideband code division multiple access (“WCDMA”) cellular communications. In such communications, a user station (e.g., a hand held cellular phone) communicates with a base station, where typically the base station corresponds to a “cell.”
Due to various factors including the fact that CDMA communications are along a wireless medium, an originally transmitted communication from a base station to a user station may arrive at the user station at multiple and different times. Each different arriving signal that is based on the same original communication is said to have a diversity with respect to other arriving signals originating from the same transmitted communication. Further, various diversity types may occur in CDMA communications, and the CDMA art strives to ultimately receive and process the originally transmitted data by exploiting the effects on each signal that are caused by the one or more diversities affecting the signal.
One type of CDMA diversity occurs because a transmitted signal from the base station is reflected by objects such as the ground, mountains, buildings, and other things that it contacts. As a result, a same single transmitted communication may arrive at the receiver at numerous different times, and assuming that each such arrival is sufficiently separated in time, then each different arriving signal is said to travel along a different channel and arrive as a different “path.” These multiple signals are referred to in the art as multiple paths or multipaths. Several multipaths may eventually arrive at the user station and the channel traveled by each may cause each path to have a different phase, amplitude, and signal-to-noise ratio (“SNR”). Accordingly, for one communication between one base station and one user station, each multipath is a replica of the same user information, and each path is said to have time diversity relative to other mulitpath(s) due to the difference in arrival time which causes different (uncorrelated) fading
oise characteristics for each multipath. Although multipaths carry the same user information to the receiver, they may be separately recognized by the receiver based on the timing of arrival of each multipath. More particularly, CDMA communications are modulated using a spreading code which consists of a series of binary pulses, and this code runs at a higher rate than the symbol data rate and determines the actual transmission bandwidth. In the current industry, each piece of CDMA signal transmitted according to this code is said to be a “chip,” where each chip corresponds to an element in the CDMA code. Thus, the chip frequency defines the rate of the CDMA code. Given the use of transmission of the CDMA signal using chips, then multipaths separated in time by more than one of these chips are distinguishable at the receiver because of the low auto-correlations of CDMA codes as known in the art.
In contrast to multipath diversity which is a natural phenomenon, other types of diversity are sometimes designed into CDMA systems in an effort to improve SNR, thereby improving other data accuracy measures (e.g., bit error rate (“BER”), frame error rate (“FER”), and symbol error rate (“SER”)). An example of such a designed diversity scheme is antenna diversity and is introduced here since it has particular application to the preferred embodiments discussed later. Antenna diversity, or sometimes referred to as antenna array diversity, describes a wireless system using more than one antenna by a same station. Antenna diversity often proves useful because fading is independent across different antennas. Further, the notion of a station using multiple antennas is more typically associated with a base station using multiple antennas to receive signals transmitted from a single-antenna mobile station, although more recently systems have been proposed for a base station using multiple antennas to transmit signals transmitted to a single-antenna mobile station. Each of these alternatives is further explored below.
Certain antenna array diversity techniques suggest the use of more than one antenna at the receiver, and this approach is termed receive antenna diversity. For example, in prior art analog systems, often a base station receiver was equipped with two antennas, each for receiving a signal from a single-antenna mobile station. Thus, when the single-antenna mobile station transmits to the base station, each receiver antenna provides at least one corresponding received signal for processing. By implementing multiple receive antennas, the performance of an ideal receiver is enhanced because each corresponding received signal may be separately processed and combined for greater data accuracy.
More recently there have been proposals to use more than one antenna at the transmitter, and this approach is termed transmit antenna diversity. For example, in the field of mobile communications, a base station transmitter is equipped with two antennas for transmitting to a single-antenna mobile station. The use of multiple antennas at the base station for transmitting has been viewed as favorable over using multiple antennas at the mobile station because typically the mobile station is in the form of a hand-held or comparable device, and it is desirable for such a device to have lower power and processing requirements as compared to those at the base station. Thus, the reduced resources of the mobile station are less supportive of multiple antennas, whereas the relatively high-powered base station more readily lends itself to antenna diversity. In any event, transmit antenna diversity also provides a form of diversity from which SNR may be improved over single antenna communications by separately processing and combining the diverse signals for greater data accuracy at the receiver. Also in connection with transmit antenna diversity and to further contrast it with multipath diversity described above, note that the multiple transmit antennas at a single station are typically within several meters (e.g., three to four meters) of one another, and this spatial relationship is also sometimes referred to as providing spatial diversity. Given the spatial diversity distance, the same signal transmitted by each antenna will arrive at a destination (assuming no other diversity) at respective times that relate to the distance between the transmitting antennas. However, the difference between these times is considerably smaller than the width of a chip and, thus, the arriving signals are not separately distinguishable in the same manner as are multipaths described above.
Given the development of transmit antenna diversity schemes, two types of signal communication techniques have evolved to improve data recognition at the receiver given the transmit antenna diversity, namely, closed loop transmit diversity and open loop transmit diversity. Both closed loop transmit diversity and open loop transmit diversity have been implemented in various forms, but in all events the difference between the two schemes may be stated with respect to feedback. Specifically, a closed loop transmit diversity system includes a feedback communication channel while an open loop transmit diversity system does not. Both of these systems as well as the distinction between them are further detailed below.
FIG. 1
illustrates a prior art closed loop transmit antenna diversity system
10
including a transmitter
12
and a receiver
14
. By way of example, assume that transmitter
12
is a base stat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless system with transmitter having multiple transmit... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless system with transmitter having multiple transmit..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless system with transmitter having multiple transmit... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.