Wireless suspension with two-sided enclosure of conductive...

Dynamic magnetic information storage or retrieval – Head mounting – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S245900

Reexamination Certificate

active

06268981

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to disk drive suspensions, and more particularly to wireless disk drive suspension assemblies having conductive traces enclosed on both sides with electrically and mechanically shielding metal layers including the load beam on one side and the wireless conductor metal layer on the second side.
2. Related Art
Wireless disk drive suspensions are referred to by various trade designations such as ILS or Integrated Lead Suspension, Trace, or CAPS. While somewhat differently manufactured, e.g., from an additive process in which successive layers are built up, or from a subtractive process in which selective removal of layers gives the desired structure: a flexible conductive laminate structure, all these devices involve a metal or base layer that may be used to define the suspension flexure, a plastic layer that contains, insulates and protects a layer comprised of conductive traces of deposited copper metal, and usually a cover layer of insulative plastic. As set forth below, there is a trend in suspension devices toward smaller signal amplitudes being available and thus ambient electrical noise becomes a greater factor. There is a need to further improve wireless suspensions to minimize the effect of electrical disturbances.
SUMMARY OF THE INVENTION
It is an object of the invention, therefore, to provide an improved wireless suspension. It is a further object to provide electrical and mechanical protection to the delicate traces in a wireless suspension. Another object of the invention is to invert the normal orientation of the flexible conductive laminate on the load beam so that the metal layer is outermost and not next to the load beam and provides both electrical shielding and mechanical protection to the conductive traces. Other objects include supporting the flexible conductive laminate by tab structures extending from the metal layer to the load beam, recessing the load beam to accommodate the non-metal portions of the flexible circuit laminate, and adding a visco-elastic damping material to the load beam/flexible conductive laminate combination of the invention.
These and other objects of the invention to become apparent hereinafter, are realized in a disk drive suspension having increased protection against signal loss and mechanical damage and increased isolation from ambient electrical disturbances, the suspension comprising a metal load beam and a flexible conductive laminate comprising a metal layer and a plastic layer comprising an insulating film having a plurality of conductive traces therein, the plastic layer being sandwiched between the metal load beam and the conductive laminate metal layer in metal load beam and metal layer spacing relation, the conductive laminate metal layer being electrically connected to the load beam, whereby the conductive traces are protected on two sides against signal loss and mechanical damage and have increased isolation from ambient electrical disturbances.
In this and like embodiments, typically, the flexible conductive laminate metal layer defines a tab extending to the metal load beam and attached thereto in mechanically supporting and electrically conducting relation, the flexible conductive metal layer defines a pair of opposed tabs on opposite sides of the metal layer, the tabs extending generally normal to the metal layer and having terminals extending in parallel with the load beam, the metal layer being attached to the load beam by the tabs, the tab terminals extend in the plane of the plastic layer, the load beam defines a channel sized and shaped to receive the flexible conductive laminate plastic layer opposite the load beam, the flexible conductive metal layer defines a pair of opposed tabs on opposite sides of the metal layer, the tabs extending in the plane of the metal layer and having terminals parallel with the load beam, and there can also be included a visco-elastic material attached to the load beam in vibration damping relation, and/or the flexible conductive laminate extends the length of the load beam to a terminus, the metal layer of the flexible conductive laminate having a projecting portion extending beyond the laminate terminus, the metal layer projecting portion defining a flexure for the suspension.
In a further embodiment, the invention provides a disk drive suspension having increased protection against signal loss and mechanical damage and increased isolation from ambient electrical disturbances, the suspension comprising a slider, a flexure supporting the slider, a metal load beam and a flexible conductive laminate comprising a metal layer and a plastic layer comprising an insulating film having a plurality of conductive traces therein, the metal layer defining the flexure, the plastic layer being sandwiched between the metal load beam and the conductive laminate metal layer in metal load beam and metal layer spacing relation, the conductive laminate metal layer being electrically connected to the load beam, whereby the conductive traces are protected on two sides against signal loss and mechanical damage and have increased isolation from ambient electrical disturbances.
In this and like embodiments, typically, the flexible conductive laminate metal layer defines a tab extending to the metal load beam and attached thereto in mechanically supporting and electrically conducting relation, the flexible conductive metal layer defines a pair of opposed tabs on opposite sides of the metal layer, the tabs being formed commonly with the metal layer and extending generally normal to the metal layer and having terminals extending in parallel with the load beam, the metal layer being attached to the load beam by the tabs, and the tab terminals are formed commonly with the metal layer and the tabs and extend in the plane of the plastic layer.
Further, the invention in this embodiment includes a visco-elastic material attached to the load beam in vibration damping relation.
Preferably, the flexible conductive laminate extends the length of the load beam to a terminus, the metal layer of the flexible conductive laminate having a projecting portion extending beyond the laminate terminus, the metal layer projecting portion defining the suspension flexure.
Additionally, in these and like embodiments, typically, the load beam can be etched to define a channel sized and shaped to receive the flexible conductive laminate plastic layer opposite the load beam, the flexible conductive laminate metal layer defines a tab extending outward from and generally in the plane of the metal layer, the tab attaching the metal layer to the load beam in mechanically supporting and electrically conducting relation, the flexible conductive metal layer defines a pair of opposed tabs on opposite sides of the metal layer, the tabs being formed commonly with the metal layer and having terminals by which the metal layer is attached to the load beam, the tab terminals are formed commonly with the metal layer and the tabs and extend in the plane of the metal layer.
In its method aspects, the invention provides a method for the assembly of disk drive suspensions including juxtaposing a load beam and flexible conductive laminate having a plastic layer comprising conductive traces in insulating plastic, and a metal layer with the metal layer, the laminate metal layer being remote to the load beam, the laminate metal layer defining a flexure for mounting a slider, and attaching the flexible conductive laminate to the load beam in mechanical and electrically connected relation, whereby the conductive traces are protected on two sides against signal loss and mechanical damage and have increased isolation from ambient electrical disturbances.
The method typically further includes defining a plurality of projecting tabs on the laminate metal layer, and attaching the metal layer to the load beam with the tabs, and in some embodiments also etching a longitudinally extended recess in the load beam in laminate plastic layer receiving relation and inserting the laminate plastic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless suspension with two-sided enclosure of conductive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless suspension with two-sided enclosure of conductive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless suspension with two-sided enclosure of conductive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446527

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.