Data processing: generic control systems or specific application – Specific application – apparatus or process – Mechanical control system
Reexamination Certificate
1998-03-06
2003-05-27
Patel, Ramesh (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Mechanical control system
C141S094000, C340S005900
Reexamination Certificate
active
06571151
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a wireless nozzle interface for a fuel dispenser and an intelligent nozzle associated therewith, and, more particularly, to an improved dispenser and nozzle providing RF communications between an intelligent nozzle and a fuel dispenser to enhance nozzle functionality in an intrinsically safe manner.
Historically, designers of fuel dispensers and nozzles have attempted to provide electronics, displays, and basic controller functions within the nozzle itself. These attempts have been unacceptable given the difficulty of transporting electrical power and signals from the fuel dispenser to the nozzle in a safe manner. U.S. Pat. No. 4,005,412, issued on Jun. 25, 1977 to Leandr is exemplary of the prior art. Leandr discloses a display placed on a fuel dispenser's nozzle. The display is capable of displaying the amount of fuel dispensed, or other desired information. The nozzle is completely powered by a battery installed therein. Another example of such a nozzle is described in U.S. Pat. No. 4,140,013 to Hunger. The Hunger reference discloses a nozzle having an electronic flow meter and a display system for displaying data to a customer. The reference suggests using a battery for powering the electronic flow meter and display.
Numerous other attempts have been made in the prior art to provide electronics and computer-type capabilities at the dispensing nozzle. The problem in the prior art is that no safe and energy efficient way exists to provide power and communications to the nozzle. Because of the high volatility of fuel being dispensed, it has always been unsafe to provide direct power supplies in the nozzle, or to run electrical wires to the nozzle. As a result, although numerous patents and prior art publications showing electronics installed in fuel dispensing nozzles exist, none of these have met with commercial success. Regulatory bodies responsible for safety, such as Underwriters Laboratories (UL), have been reluctant to grant approval to fuel dispensing nozzles with unsafe power supplies built in.
Another problem with powering and communicating with fuel dispensing nozzles is that wires must run from the remote location, down the fuel dispensing hose, to the nozzle. The problem with this is that the nozzle is often twisted and turned by the user relative to the fuel dispensing hose. Such use presents the danger that the wires will bend too often and eventually fray or electrically short to one another. Due to the volatility of the fuel being dispensed, the situation can become dangerous and explosions may occur.
U.S. Pat. Nos. 5,184,309 and 5,365,984 to Simpson et al. disclose an intelligent dispensing nozzle and an electrical connector and fuel dispenser hose for providing an electronic connection between the dispenser and the intelligent nozzle, respectively. The first Simpson et al. reference discloses a rechargeable battery and one of two power supply means. The first power supply means facilitates an electromagnetic coupling of the nozzle to the fuel dispenser, when the nozzle is placed in the dispenser. With the electromagnetic coupling, the fuel dispenser is unable to communicate with the nozzle during a fueling operation. All information must be gathered and sent to the dispenser after the fueling operation is ended and the nozzle is placed back on the dispenser.
The second embodiment uses an electrical-to-optical power conversion and requires an expensive, complex fuel delivery hose having an optical link between the dispenser and nozzle. The electrical-to-optical conversion provides limited power and requires complex mechanical configurations to maintain connection between the nozzle and delivery hose and the dispenser and delivery hose, especially since the nozzle is preferably designed to spin relative to the delivery hose.
The second Simpson et al. reference discloses a connector for an electrical connection between the dispenser nozzle and the delivery hose. The electrical connector and dispensing hose disclosed are very complex and expensive to manufacture, in addition to being incompatible with all nozzles other than a specific nozzle design to interface with such hose and connector. Both of the Simpson et al patents are incorporated herein by reference.
Given the desire to provide user-friendly electronics, data input capabilities and other components, which require electric power, in a fuel dispensing nozzle, it can be appreciated from the above discussion that there is a need to provide a safe, efficient and easy-to-manufacture technique for providing communications between a fuel dispenser and the dispensing nozzle.
SUMMARY OF THE INVENTION
The present invention provides an intelligent nozzle having a communication system capable of secure wireless communications with an associated dispenser. Information may be transmitted from the dispenser to the nozzle to facilitate nozzle control or display to a customer, and information received at the nozzle may be transmitted to the dispenser for further processing or display.
Accordingly, one aspect of the present invention is to provide an intelligent nozzle for a fuel dispenser comprising a body having a fuel inlet for receiving fuel, a spout for delivering fuel, a flow path between the inlet and spout, and a handle portion with a trigger for controlling the fuel delivery along the flow path. The nozzle may include a control system for processing information and wireless communication electronics operatively associated with the control system and adapted to provide wireless communications between the nozzle and a dispenser communication device at an associated dispenser. The control system and communications electronics operate to provide an intrinsically safe wireless communication link between the nozzle and the dispenser communication device.
The nozzle may include a power supply with or without a battery, recharging circuitry and optional energy coupling electronics to aid in recharging the battery. Energy may be electromagnetically coupled to the nozzle from a transformer located at or near the fuel dispenser. Preferably, such recharging using the electromagnetically-coupled energy occurs when the nozzle is mounted in the dispenser.
The nozzle may also include a display mounted on the body and coupled to the control system to display information to a customer. An input device may be provided on the body and coupled to the control system to allow a customer to input information to the control system. The input device may be a keypad and/or card reader.
The nozzle trigger may be operatively coupled to a trigger position detector adapted to provide a trigger position signal indicative of trigger position. The control system will receive the trigger position signal and provide a flow control signal based thereon. The flow signal may be used to derive a flow control signal configured to operate a flow control valve. Optionally, the flow control signal and any other information may be transmitted to the fuel dispenser for additional flow control. Thus, information gathered at the nozzle or received by the customer at the nozzle may be used at the nozzle and/or transmitted to the fuel dispenser for processing. Information gathered or received at the fuel dispenser may be transmitted to the nozzle for processing at the nozzle or displayed to the customer at the nozzle.
Additionally, the nozzle may include various sensors, such as octane sensors in the fuel delivery path or hydrocarbon concentration sensors in the vapor recovery path to provide signals to control fuel delivery and vapor recovery, respectively. The control may take place at the nozzle and/or the dispenser after transmission.
Communications are preferably radio communications in the microwave range, but may include radio communications or any other type of wireless communication means to facilitate information transfer. Preferably, the information is transmitted through free air between the dispenser and nozzle, but may be transmitted wirelessly within the fuel delivery hose wherei
Gain, Jr. Edward F.
Patel Ramesh
LandOfFree
Wireless nozzle interface for a fuel dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wireless nozzle interface for a fuel dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless nozzle interface for a fuel dispenser will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3067827