Wireless location using multiple location estimators

Communications: directive radio wave systems and devices (e.g. – Directive – Position indicating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S457000, C342S357490

Reexamination Certificate

active

06249252

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed generally to a system and method for locating people or objects, and in particular, to a system and method for locating a wireless mobile station using a plurality of activated mobile station location estimators.
The present invention is directed generally to a system and method for locating people or objects, and in particular, to a system and method for locating a wireless mobile station using a plurality of mobile station location estimators. More generally, the present invention is directed to a computational system and method for calibrating the relative performance of multiple models, wherein each such model is capable of being activated for generating hypotheses (e.g., estimates and/or predictions) of an unknown condition such as the location of wireless mobile station. Additionally, the present invention is directed to a computational system and method for generating enhanced hypotheses of the unknown condition, wherein the model generated hypotheses are used as queries into an archive that associates: (a) historical model generated hypotheses, (b) model input data used in generating the model hypotheses, and (c) verified hypotheses to which the model input data is known to correspond.
BACKGROUND OF THE INVENTION
Introduction
Wireless communications systems are becoming increasingly important worldwide. Wireless cellular telecommunications systems are rapidly replacing conventional wire-based telecommunications systems in many applications. Cellular radio telephone networks (“CRT”), and specialized mobile radio and mobile data radio networks are examples. The general principles of wireless cellular telephony have been described variously, for example in U.S. Pat. No. 5,295,180 to Vendetti, et al, which is incorporated herein by reference.
There is great interest in using existing infrastructures for wireless communication systems for locating people and/or objects in a cost effective manner. Such a capability would be invaluable in a variety of situations, especially in emergency or crime situations. Due to the substantial benefits of such a location system, several attempts have been made to design and implement such a system.
Systems have been proposed that rely upon signal strength and trilateralization techniques to permit location include those disclosed in U.S. Pat. Nos. 4,818,998 and 4,908,629 to Apsell et al. (“the Apsell patents”) and U.S. Pat. No. 4,891,650 to Sheffer (“the Sheffer patent”). However, these systems have drawbacks that include high expense in that special purpose electronics are required. Furthermore, the systems are generally only effective in line-of-sight conditions, such as rural settings. Radio wave surface reflections, refractions and ground clutter cause significant distortion, in determining the location of a signal source in most geographical areas that are more than sparsely populated. Moreover, these drawbacks are particularly exacerbated in dense urban canyon (city) areas, where errors and/or conflicts in location measurements can result in substantial inaccuracies.
Another example of a location system using time of arrival and triangulation for location are satellite-based systems, such as the military and commercial versions of the Global Positioning Satellite system (“GPS”). GPS can provide accurate position determination (i.e., about 100 meters error for the commercial version of GPS) from a time-based signal received simultaneously from at least three satellites. A ground-based GPS receiver at or near the object to be located determines the difference between the time at which each satellite transmits a time signal and the time at which the signal is received and, based on the time differentials, determines the object's location. However, the GPS is impractical in many applications. The signal power levels from the satellites are low and the GPS receiver requires a clear, line-of-sight path to at least three satellites above a horizon of about 60 degrees for effective operation. Accordingly, inclement weather conditions, such as clouds, terrain features, such as hills and trees, and buildings restrict the ability of the GPS receiver to determine its position. Furthermore, the initial GPS signal detection process for a GPS receiver is relatively long (i.e., several minutes) for determining the receiver's position. Such delays are unacceptable in many applications such as, for example, emergency response and vehicle tracking.
Summary of Factors Affecting RF Propagation
The physical radio propagation channel perturbs signal strength, frequency (causing rate changes, phase delay, signal to noise ratios (e.g., C/I for the analog case, or E
b/No
, RF energy per bit, over average noise density ratio for the digital case) and Doppler-shift. Signal strength is usually characterized by:
Free Space Path Loss (L
p
)
Slow fading loss or margin (L
slow
)
Fast fading loss or margin (L
fast
)
Loss due to slow fading includes shadowing due to clutter blockage (sometimes included in Lp). Fast fading is composed of multipath reflections which cause: 1) delay spread; 2) random phase shift or Rayleigh fading, and 3) random frequency modulation due to different Doppler shifts on different paths.
Summing the path loss and the two fading margin loss components from the above yields a total path loss of:
L
total
=L
p
+L
slow
+L
fast
Referring to
FIG. 3
, the figure illustrates key components of a typical cellular and PCS power budget design process. The cell designer increases the transmitted power P
TX
by the shadow fading margin L
slow
which is usually chosen to be within the 1-2 percentile of the slow fading probability density function (PDF) to minimize the probability of unsatisfactorily low received power level P
RX
at the receiver. The P
RX
level must have enough signal to noise energy level (e.g., 10 dB) to overcome the receiver's internal noise level (e.g., −118 dBm in the case of cellular 0.9 GHz), for a minimum voice quality standard Thus in the example P
RX
must never be below −108 dBm, in order to maintain the quality standard.
Additionally the short term fast signal fading due to multipath propagation is taken into account by deploying fast fading margin L
fast
, which is typically also chosen to be a few percentiles of the fast fading distribution. The 1 to 2 percentiles compliment other network blockage guidelines. For example the cell base station traffic loading capacity and network transport facilities are usually designed for a 1-2 percentile blockage factor as well. However, in the worst-case scenario both fading margins are simultaneously exceeded, thus causing a fading margin overload.
SUMMARY DISCUSSION
The present invention relates to a method and system for performing wireless mobile station location. In particular, the present invention is a wireless mobile station location computing method and system that utilizes multiple wireless location computational estimators (these estimators also denoted herein as MS location hypothesizing computational models, “first order models” and/or “location estimating models”), for providing a plurality of location estimates of a target mobile station, wherein ambiguities and/or conflicts between the location estimates may be effectively and straightforwardly resolved. More particularly, the present invention provides a technique for calibrating the performance of each of the location estimators so that a confidence value (e.g., a probability) can be assigned to each generated location estimate. Additionally, the present invention provides a straightforward technique for using the confidence values (probabilities) for deriving a resulting most likely location estimate of a target wireless mobile station.
More generally, the present invention relates to a novel computational method and architecture for synergistically combining the results of a plurality of computational models in a straightforward way that allows the models to be calibrated relative to one another so that differences in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless location using multiple location estimators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless location using multiple location estimators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless location using multiple location estimators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537292

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.