Wireless high-speed internet access system allowing multiple...

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S103000, C455S117000, C455S128000, C455S129000, C343S840000

Reexamination Certificate

active

06405058

ABSTRACT:

FIELD OF THE INVENTION
This invention relates, generally, to an improvement in radio system construction and deployment that allows for a higher concentration of radio transceivers to be collocated and more specifically to an Internet access system including a high isolation parabolic horn antenna and other isolation techniques to allow for a high concentration of transceivers at one location thus improving data rates and significantly lowering the cost of deployment of a wireless Internet access system.
BACKGROUND OF THE INVENTION
As the communications industry continues to evolve, ever-increasing demand for high-speed broadband solutions for communications will result, with the accompanying technologies experiencing a similar demand pattern. While industry analysts predict that 100-megabit speeds will be common by the year 2002, the disclosed system design can assist in delivering these speeds now.
The need for high-speed Internet access within the U.S. is well defined. With respect to Internet applications alone, as of Dec. 1999, there were fewer than 250,000 U.S. customers purchasing DSL services, as compared to more than 30 million Internet customers. The ever increasing need for wireless communication services such as Cellular Mobile Telephone (CMT), Digital Cellular Network (DCN), Personal Communication Services (PCS) and the like, typically requires the operators of such systems to serve an ever increasing number of users in a given service area. As a result, certain types of base station equipment including high capacity Broadband Transceiver Systems (BTS) have been developed which are intended to service a relatively large number of active mobile stations in each cell. Such broadband transceiver system equipment can typically service, for example, ninety-six simultaneously active mobile stations in a single four-foot tall rack of electronic equipment. This base station equipment typically costs less than $2000 to $4000 per channel to deploy, and so the cost per channel serviced is relationally low. But, demand is increasing beyond capacity and downward cost pressures continue to exist.
Numerous patents have attempted to solve these problem such as U.S. Pat. No. 5,970,410 issued to Carney, et al. on Oct. 19, 1999 titled Cellular System Plan Using In Band-Translators To Enable Efficient Deployment Of High Capacity Base Transceiver Systems. This patent describes a wireless system architecture whereby high efficiency broadband transceiver systems can be deployed at an initial build out stage of the system in a cost-efficient manner. A home base station location is identified within each cluster of cells and rather than deploy a complete suite of base station equipment at each of the cells in the cluster, inexpensive translator units are located in the outlying cells serviced by the home base station in which low traffic density is expected. The translators are connected to directional antennas arranged to point back to the home base station site. The translators are deployed in such a way which meshes with the eventually intended frequency reuse for the entire cluster of cells. The translator to base station radio links operate in-band, that is, within the frequencies assigned to the service provider. For example, the available frequency bands are divided into at least two sub-bands, with a first sub-band is assigned for use as a home base station to translator base station communication link and a second sub band is assigned for use by the mobile station to translator communication link. If desired, a third sub-band can then be used for deployment of base transceiver systems in the conventional fashion where the base station equipment located at the center of a cell site communicates only with mobile stations located within that cell. When coupled with efficient frequency reuse schemes maximum efficiency in densely populated urban environments is obtained. According to some arrangements the cells are each split into radial sectors and frequencies are assigned to the sectors in such a manner as to provide the ability to reuse available frequencies. Although frequency reuse schemes can be highly efficient, it requires at least two complete sets of multi-channel transceiver equipment such as in the form of a Broadband Transceiver System (BTS) to be located in each cell.
However, when a wireless system first comes on line, demand for use in most of the cells is relatively low, and it is typically not possible to justify the cost of deploying complex multichannel broadband transceiver system equipment based only upon the initial number of subscribers. Because only a few cells at high expected traffic demand locations (such as at a freeway intersection) will justify the expense to build-out with high capacity Broadband Transceiver System equipment, the service provider is faced with a dilemma. He can buildout the system with less expensive narrowband equipment initially, to provide some level of coverage, and then upgrade to the more efficient equipment as the number of subscribers rapidly increases in the service area. However, the initial investment in narrowband equipment is then lost. Alternatively, a larger up front investment can be made to initially deploy high capacity equipment, so that once demand increases, the users of the system can be accommodated without receiving busy signals and the like. But this has the disadvantage of carrying the money cost of a larger up front investment.
Other various techniques for extending the service area of a given cell have been proposed. For example, U.S. Pat. No. 4,727,490 issued to Kawano et al. and assigned to Mitsubishi Denki Kabushiki Kaisha, discloses a mobile telephone system in which a number of repeater stations are installed at the boundary points of hexagonally shaped cells. The repeaters define a small or minor array that is, in effect, superimposed on a major array of conventional base stations installed at the center of the cells. With this arrangement, any signals received in so-called minor service areas by the repeaters are relayed to the nearest base station.
Another technique was disclosed in U.S. Pat. No. 5,152,002 issued to Leslie et al., wherein the coverage of a cell is extended by including a number of so-called “boosters” arranged in a serial chain. As a mobile station moves along an elongated area of coverage, it is automatically picked up by an approaching booster and dropped by a receding booster. These boosters, or translators, use highly directive antennas to communicate with one another and thus ultimately via the serial chain with the controlling central site. The boosters may either be used in the mode where the boosted signal is transmitted at the same frequency as it is received or in a mode where the incoming signal is retransmitted at a different translated frequency.
Additional attempts to improve coverage include spectral efficiency schemes such as disclosed in U.S. Pat. 5,592,490 issued to Barratt, et al., on Jan. 7, 1997 titled Spectrally Efficient High Capacity Wireless Communication Systems which discloses a wireless system comprising a network of base stations for receiving uplink signals transmitted from a plurality of remote terminals and for transmitting downlink signals to the plurality of remote terminals using a plurality of conventional channels including a plurality of antenna elements at each base station for receiving uplink signals, a plurality of antenna elements at each base station for transmitting downlink signals, a signal processor at each base station connected to the receiving antenna elements and to the transmitting antenna elements for determining spatial signatures and multiplexing and demultiplexing functions for each remote terminal antenna for each conventional channel, and a multiple base station network controller for optimizing network performance, whereby communication between the base stations and a plurality of remote terminals in each of the conventional channels can occur simultaneously.
Other methods include specialized propagation techniques such as s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless high-speed internet access system allowing multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless high-speed internet access system allowing multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless high-speed internet access system allowing multiple... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970975

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.