Computer graphics processing and selective visual display system – Display peripheral interface input device – Including keyboard
Reexamination Certificate
2000-03-15
2004-07-06
Kostak, Victor R. (Department: 2611)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Including keyboard
C345S215000, C700S094000, C455S003060, C084S47700R
Reexamination Certificate
active
06760010
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention (Technical Field)
The invention relates to communication systems, and more particularly to a wireless communication apparatus and method for the simultaneous displaying of broadcast information by visual and audio means of performances both live and recorded on multiple channels whereby each channel can contain text in a language as selected by the user.
2. Background Art
The current state of the art for displaying translations is well described in U.S. Pat. No. 5,739,869 to Markle, et al. There are some limitations of the method and apparatus described therein. The invention described in U.S. Pat. No. 5,739,869 presents a method of distributing multiple channels of information to multiple users. This new invention provides a means to overcome the shortcomings of the Markle patent. A wireless means of transmitting data was described in U.S. Pat. No. 5,739,869 but no details were provided. It is well known to those familiar with electromagnetic transmission of data, that there is a high probability that the transmitted data will be corrupted during transmission. Various means exist to detect and correct such corruption. First, the frequency used to transmit can be selected so that there are no other sources of similar frequency operating within the broadcast area. Spread spectrum transmission means well known to those practiced in the art is another way of attaining clear and reliable transmission of data. Even with these two highly effective means of avoiding interference, it is still likely that corruption can occur. The method commonly used to ensure that data is received correctly is to retransmit the data. This requires two-way communications and a communication protocol, of which there are many possible types described and well known to those familiar with the art. Two-way communications are not practical in this application because of the large bandwidth required, the complicated protocol and the cost of the implementation, particularly with large installations comprising several thousand receivers.
Data correction methods are sometimes used to repair the damaged data transmission. These methods use several transmissions of the data and then apply a comparison of the received data to determine which transmission of the several received is correct. This method has a high statistical probability of detecting burst errors, but cannot detect and correct all errors. It is likely that errors in transmission will be passed along. In audio applications this is not a problem because the small errors passed will probably not be noticed in the whole transmission. These small errors are a problem with transmitted data because the characters presented will contain spurious errors which are readily detected by the users. It is therefore possible that the corruption of the data could change the presented text in such a way that an inappropriate meaning is conveyed. It is not possible to provide data correction of high enough certainty without drastically increasing bandwidth or transmission and processing time, and so is not a feasible alternative for this application. If a receiver does receives corrupt or incomplete data it can request that the information be retransmitted. This procedure becomes extremely complicated when many receivers request retransmission and requires a high bandwidth transmission medium to handle the requests. If a receiver is not aware that data has been transmitted because the whole transmission was missed, then it cannot request a retransmission of the data.
The present invention describes a method of achieving reliable low cost retransmission of data using low bandwidth one-way data transmission to many receivers. The method identifies each packet of data to be transmitted with a unique identifier. The packet then has a CRC (cyclic redundancy check) calculated and appended to the packet. This complete packet is transmitted and received by the individual devices. If the unique identifier is different to the one packet received previously, then the display device proceeds as follows. If the identifiers are identical then the transmission is ignored. The individual display devices then calculate another CRC using the received data and if the received and calculated CRC's are identical, then the data can be reliably declared as correct and the display device can then process the data. If the CRC's are not identical, then an error has occurred in transmission. The device or devices that received corrupted data discard that data and wait for the next transmission. If only corrupted data is received then nothing is presented by the display module, instead of displaying incomplete or mangled data that causes more problems.
The addition of batteries and wireless data transmission means allows the device to be portable. This has many advantages, to install the system in an existing house no power and data wires need be installed, this saves significant cost when installing the system.
The main problem with a “hard-wired” installation is that the whole installation needs to be installed at one time, the necessary construction work required, and the installation time needed indicates that the space cannot be used for performances while the installation is occurring. Some buildings are protected by a historic building covenant and any changes to the fabric of such buildings are prohibited. There is considerable cost involved in retrofitting such a system to an existing building, as the structure, design, layout, construction methods, and fittings are often not compatible with the later installation of such a system. Avoiding such installation work saves significant time and money
Another problem with such “hard-wired” installations is that it is economic only to install the system in one operation. The purchasers of such a system need to pay for the installation of the complete system at one time as staging the installation is much more expensive and time consuming. A wireless installation allows for an installation to proceed in stages, the system being fully operational but not necessarily complete at any one time. The wireless system allows for partial installations where a number of people are free to sit at any location in the house, something not possible with a “hard-wired” installation. The number of display units can be increased at any time as demand or finances permit.
When a hard-wired system is installed in a newly constructed system, significant savings can be realized with the inclusion of the necessary system installation work and components into the buildings construction schedule. Due to the nature of the system, much of the installation can only be performed after the other trades involved in the construction have completed their work. This means that the overall construction time must be extended to allow for the system installation to be completed before the building can be opened. This scheduling problem is extremely difficult to solve without increasing the cost of the building installation. A wireless installation can occur during the last stages of the buildings construction without affecting the building schedule.
U.S. Pat. No. 4,438,432, to Hurcum, discloses an information display system which uses multiplexed data which is transmitted over wires. This system uses addresses to decode transmitted data.
U.S. Pat. No. 4,361,848, to Poignet, discloses a tele-text method of displaying text on television using control characters. The system uses a keyboard to access information and does not support live performance use.
U.S. Pat. No. 5,850,416, to Myer, teaches a wireless, transmitter-receiver information device which uses no batteries, and utilizes an inductive power transfer method, whereby the power to operate the display unit is superimposed on the data signal. The system makes no mention of live performances, multiple channels or simultaneous display of multiple channels.
U.S. Pat. No. 5,896,129, to Murphy, shows an interface for an interactive flight entertainment system for pass
Armijo Dennis F.
Figaro Systems, Inc.
Kostak Victor R.
LandOfFree
Wireless electronic libretto display apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wireless electronic libretto display apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless electronic libretto display apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3245592