Wireless deployment of bluetooth access points using a...

Telecommunications – Transmitter and receiver at separate stations – Short range rf communication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S562100, C370S338000

Reexamination Certificate

active

06771933

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to wireless communications systems. More particularly, it relates to system and method for wireless deployment of Bluetooth access points using a distributed antenna architecture.
BACKGROUND ART
Bluetooth, a new universal radio interface, has been developed in recent years, enabling electronic devices to communicate via short-range radio connections. The Bluetooth technology not only eliminates the need for wires, cables and connectors between various electronic devices, it also paves the way for new and completely different devices and communications networks.
Bluetooth can also be advantageously utilized as a complement and an extension to wired and wireless communications networks, thereby enabling wireless communications to be virtually ubiquitous. There is therefore a need in the art for a simple, scalable, and economical way of deploying the Bluetooth technology in various wired and wireless communications networks, so as to enhance the capacity and performance of wireless communications.
SUMMARY
The aforementioned need in the art is provided by a wireless communications system of the present invention, in which a distributed antenna system (DAS) is used to extend the range of Bluetooth access points (BTAP) and one or more master Bluetooth access point modules are further utilized to create one or more wireless personal area networks (WPANs) in a scalable and versatile manner.
The distributed antenna system in the present invention employs an effective and scalable architecture that links a main unit to multiple remote units by a signal-transfer means (such as optical fibers, coaxial or CAT5 cables), wherein the remote units are in RF-communication with multiple antennae that are spatially distributed (in an indoor or outdoor environment). The main unit is in RF-communication with an integrated module (IM), which in turn interfaces directly (or indirectly) to a local area network (LAN). One or more master Bluetooth access point modules are in RF-communication with the distributed antenna system, in various configurations as exemplified in the following embodiments. Furthermore, each master Bluetooth access point module is in RF-communication with one or more slave Bluetooth devices, thereby effectively creating a wireless personal area network (WPAN).
In this specification and appending claims, a master Bluetooth access point module generally refers to a master Bluetooth access point radio (M-BTAP), a combination of a wireless LAN (WLAN) radio (e.g., IEEE 802.11b, IEEE 802.11a, HiperLAN, or HiperLAN2) and a master Bluetooth access point radio (WLAN/M-BTAP), or a combination of a master Bluetooth access point radio and any RF radio known in the art. (Note that a Bluetooth access point (BTAP) to a LAN is typically provided by a master Bluetooth radio.)
It should be noted that in this specification, an element is said to be placed in the “back-end” of the communications system of the present invention, if it is connected between the main unit of the distributed antenna system and the LAN. An element is said to be placed in the “front-end” of the communications system of the present invention, if it is in RF-communication with the antennae of the distributed antenna system.
In a first embodiment of the communications system of the present invention, one or more master Bluetooth access point modules in the form of master Bluetooth access point radios (M-BTAPs) are pooled in the back-end of the system, serving as the Bluetooth access points (BTAP) to the LAN. The M-BTAPs are in RF-communication with the main unit via an integrated module. In this case, each M-BTAP communicates with multiple slave Bluetooth devices located in the front-end of the communications system via the distributed antenna system, thereby effectively creating a wireless personal area network (WPAN) that is supported by all of the remote units. Moreover, multiple overlapping WPANs can be created by implementing multiple M-BTAPs in the back-end of the system, thereby increasing the Bluetooth coverage density. Such a configuration provides a simple and flexible way of accommodating the Bluetooth coverage density to the Bluetooth traffic demand, without altering the distributed antenna infrastructure.
In a second embodiment of the communications system of the present invention, one or more master Bluetooth access point modules in the form of master Bluetooth access point radios (M-BTAPs) are embedded in at least one of the remote units, wherein each M-BTAP further communicates with one or more slave Bluetooth devices and thereby forms a WPAN. (Note that the M-BTAPs can alternatively be extended from the remote unit in a wired star or cascaded configuration.) In this case, a remote unit can host multiple M-BTAPs, thus supporting multiple overlapping WPANS that altogether provide a coverage area of greater density. (In situations where each remote unit covers a designated area, the WPANs supported by different remote units are also substantially non-overlapping.) This configuration allows a variety of WPANs to be created in the front end of the system in a scalable and versatile manner, without altering the network configuration in the back-end.
In a third embodiment of the communications system of the present invention, one or more master Bluetooth access point modules in the form of master Bluetooth access point radios (M-BTAPs) are pooled in the back-end of the system, serving as the Bluetooth access points (BTAPS) to the LAN. The M-BTAPs are in RF-communication with the main unit via an integrated module. The system further comprises one or more slave/master Bluetooth access point modules (S/M-BTAPs) located in the front-end of the system, in RF-communication with the antenna. In this case, each M-BTAP communicates with one or more S/M-BTAPs via the distributed antenna system; and each S/M-BTAP in turn communicates with one or more slave Bluetooth devices and thereby creates a WPAN. (That is, a slave-master Bluetooth access point module is essentially a dual module of two Bluetooth access point radios, configured such that it is a “slave” to an M-BTAP located in the back-end and thus serves as an “extended Bluetooth access point”, and a “master” to the constituent slave Bluetooth devices in its WPAN.) As such, one M-BTAP (in the back-end) can support multiple S/M-BTAPs (in the front-end); and each S/M-BTAP further supports multiple slave Bluetooth devices. This configuration provides a wirelessly deployment of Bluetooth access points, and an efficient and scalable way of forming a variety of WPANs, as desired in practical applications.
In a fourth embodiment of the communications system of the present invention, one or more master Bluetooth access point modules are distributed in the front-end of the system. In this case, each master Bluetooth access point module is in the form of a combination of a WLAN radio (e.g.,IEEE 802.11b, IEEE 802.11a, HiperLAN, or HiperLAN2.) and a master Bluetooth access point radio (WLAN/M-BATP). The master Bluetooth access point radio in each WLAN/M-BTAP communicates with one or more slave Bluetooth devices, thereby forming a WPAN. And the WLAN radio in the same module serves to communicate with WLAN access points (WLAN APs) (which are typically IEEE802.11 radios) tapped to the LAN, thereby providing access to the LAN and its application server. As such, the distributed antenna system effectively extends the WLAN access points from the back-end to the front-end of the system, at which Bluetooth access points are wirelessly deployed and a plurality of WPANS further created.
In the aforementioned embodiments (and many alternative embodiments according to the present invention), the employment of a distributed antenna system provides an effective and scalable way of extending the range of Bluetooth (or WLAN) access points. And the coupling of various types of master Bluetooth access point modules with the distributed antenna system enables Bluetooth (or WLAN) access points to be wirelessly deployed in the front-end of the sys

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless deployment of bluetooth access points using a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless deployment of bluetooth access points using a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless deployment of bluetooth access points using a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3333134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.