Wireless communication system, apparatus and method using an...

Multiplex communications – Communication over free space – Repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S319000, C370S466000, C370S342000, C455S431000, C455S456500, C455S121000, C342S356000, C342S354000

Reexamination Certificate

active

06781968

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to the field of wireless communications and in particular to network system for providing regional wireless communications.
BACKGROUND OF THE INVENTION
The worldwide demand for increased connectivity, especially via wireless networks has increased dramatically in the last decade. Individual subscribers to a network have come to expect high quality, seamless, connectivity within the network and between the network and other networks. Additionally, connectivity demands by network subscribers, once confined almost exclusively to narrowband data such as voice services, now include voice, data, text, sound and video typically considered wideband data. Therefore, concomitant with the increased demand for connectivity has been an increase in demand for bandwidth both in terms of bandwidth allocated to the individual subscriber terminal within the network and in terms of the overall network bandwidth. The bandwidth demands are increasing dramatically in part due to the surge in Internet related services that are being provided via these networks.
To address the need for more bandwidth and better connectivity, a number of new technologies and systems, both hardware and software, are being developed, with steadily improving performance, to deliver voice, data, text, sound, and video at higher speeds and decreasing prices.
While much of the network connectivity has traditionally been supplied by so called wired networks, wireless networks are becoming a more and more important part of the overall approach to connectivity. Wireless systems for the delivery of network services include those based on transmission from and to terrestrial towers, transmission from and to satellites in orbit around the earth and, very recently, transmission to and from atmospheric platforms. Examples of terrestrial tower based wireless systems included cellular telephone systems and point-to-point microwave local loops. Satellite systems include low-earth orbit (LEO), medium-earth orbit (MEO), and geostationary earth orbit (GEO), systems. Transmission to and from an atmospheric platform for providing network connectivity is described in the co-pending applications referenced hereinabove.
As described in the co-pending applications, the atmospheric platform serves as a central node, providing connectivity between the various elements in a wireless communications network. Such an atmospheric platform based network configuration offers distinct benefits and advantages over both terrestrial tower and satellite systems. Some of the advantages are described below. One advantage is that the atmospheric platform provides a simple network topology. For example, the network has one node for all subscribers instead of many nodes as in a mesh topology typical of terrestrial tower based wireless systems. Moreover, the atmospheric platform offers a clear, unobstructed signal path to nearly every rooftop in the signal footprint of the network owing to its relatively high altitude compared to terrestrial towers. Further, the atmospheric platform based network provides for the use of smaller power-aperture products of both the subscriber terminals or user equipment units (UE) and platform antennas for achieving information rates greater than possible with systems such as those involving orbiting satellites. Additionally, the atmospheric platform based network can be routinely serviced, improved, and upgraded by modifying the equipment aboard the atmospheric platform, an action that is not routine with satellites. Services to all subscribers can be improved or enhanced by modifying a single node only, i.e., the atmospheric platform, rather than simultaneously upgrading tens to hundreds of towers of typical terrestrial wireless networks. Also, most components selected for the communications network equipment aboard the platform can be of a commercial grade from vendors in the terrestrial wireless communications markets, rather than of a space grade as required by satellites.
However, there are often severe practical limitations affecting weight, linear dimensions, power, and thermal performance imposed on the network equipment operating aboard the atmospheric platform. While they are limitations for operation on the airborne platform, the weight, linear dimensions, power and thermal performance are seldom bothersome to equipment installations on the ground. To accommodate the use aboard an airborne platform, it is often necessary to “repackage” equipment with attending added cost and technical risk. The task of “repackaging” may include, but is not limited to, reconfiguring circuit modules and boards, redesigning power conditioning circuits and their interfaces, introducing fluid cooling to components normally requiring air flow only, and manufacturing of special-purpose mechanical fixtures and interfaces. Often with components that need to be “repackaged”, a close working relationship with the vendor or vendors of the equipment is required in order to be successful. For highly complex equipment, such as state-of-the-industry packet switches, slight modifications can profoundly affect performance. In the highly competitive telecommunications markets, switch manufacturers optimize their products for their established customers to maintain their sales volumes and market share, and will pursue new applications requiring modifications of their core products typically only if stimulated by large funding and/or the prospect of a large future sales opportunity.
Consequently, when possible, it is advantageous to operate the network equipment in conditions as closely as possible to those specified by the vendor for normal operation, in order to preclude the need for repackaging. Operating network equipment under “normal” conditions eliminates risk and reduces cost. Since the most complex equipment in any given network is that associated with network processing and switching, a great advantage can be realized by minimizing the need for repackaging. One way to overcome the need for repackaging in the case of the atmospheric platform based network is to locate the “switch” on the ground rather than in the atmospheric platform. However, this solution is not without its problems. One problem to overcome is how to accomplish this without sacrificing network connectivity or other performance characteristics of the network.
It would be advantageous to have a wideband wireless communications system that combined the benefits of an airborne platform with the benefits of network processing and switching on the ground. Such a system could use standard equipment on the ground rather than specially designed equipment for the airborne platform.
SUMMARY OF THE INVENTION
The present invention is a novel communications network utilizing an airborne or atmospheric platform as a central node in a star topology wireless communication network serving a plurality of subscribers. Moreover the communications network of the present invention incorporates communications equipment aboard the airborne platform providing a bidirectional, aggregated wideband wireless communications channel called a trunkline between the airborne platform and one or more ground stations or gateways so that complex network equipment, for example switches and channelizers, can be located on the ground instead of on the airborne platform.
According to the present invention, a novel network architecture provides wireless communications, such as voice, data, images, video, and multi-media services, to a geographic area large enough to encompass a city and its neighboring communities. The network of the present invention can provide broadband and narrowband data services to subscribers by utilizing signal bandwidths at either microwave or millimeter wave (MMW) carrier frequencies for providing wireless subscriber links. The present invention utilizes a wide, contiguous or non-contiguous band of spectrum in point-to-point links serving as wireless trunklines connecting the network gateways or ground stations, on the ground, to the communicati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wireless communication system, apparatus and method using an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wireless communication system, apparatus and method using an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wireless communication system, apparatus and method using an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3348099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.