Horizontally supported planar surfaces – Attached laterally of support
Reexamination Certificate
1999-08-23
2001-07-17
Cuomo, Peter M. (Department: 3624)
Horizontally supported planar surfaces
Attached laterally of support
C108S042000, C211S090010
Reexamination Certificate
active
06260489
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
None.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
BACKGROUND OF THE INVENTION
For purposes of storage and decoration, building owners and dwellers frequently wish to hang implements on empty wall space. Such implements may be in the form of shelves, pictures, diplomas or other interior design accessories. Fasteners used to attach these implements to a wall surface desirably will be able to support potentially heavy loads, without damage to the wall structure, while maintaining an aesthetic appearance. Unfortunately, the size or bulk of a fastener generally is proportional to the given load it can bear. Weight particularly is a limiting factor when hanging shelves, as fasteners must support the weight of the shelf in addition to any items placed thereon.
Often the desired location of wall implements will change within a relatively short period of time. This is especially true in cases of apartment dwellings where high turnover among tenants is expected. Even in residential areas, owners frequently move. Those who stay in one place for a long period of time invariably wish to redecorate and in the process reposition or relocate existing wall implements.
To use common wall implement fasteners often requires making a substantial size hole in the wall. Wing-type fasteners include a bolt with two “wing” extrusions attached which extend normal to the length of the bolt. Once inserted through a wall, the bolt is fastened to hold the extrusions in tension against the back of the wall, supporting the weight of an implement affixed to the wall's forward surface. While the extruding wings may be folded together before being inserted through an opening in the wall, the widest portion of the fastener still may be three times the diameter of the bolt alone. To remove the fastener from the wall, the bolt is withdrawn and the wing portion falls down irretrievably into the wall cavity. Once such a fastener has been removed, a sizable hole in the wall remains.
Another type of fastener is that of a screw and an anchor. A hole is drilled in the wall surface and the anchor is inserted. The anchor has a forward face which abuts the forward surface of the wall when the anchor is inserted. A screw is inserted within the anchor causing the anchor at the back surface of the wall to expand. A wall implement is then supported by the screw. To remove the fastener, the screw and the anchor are both removed. While no pieces of the fastener must be replaced once removed from the wall as with the wing-type fasteners, a hole still remains in the wall whose size is proportional to the size of the fastener. Generally, the greater the weight required to be supported, the greater the size of the fastener and the resulting hole.
In addition to leaving an unsightly hole when removed, most fasteners may cause structural damage to the wall if an excessive load is placed on them. Placing a heavy implement on a fastener can cause the drywall around the hole to collapse or tear out. This is particularly true where the drywall is of relatively thin conventional thickness. It is readily apparent that the problems associated with the use of these types of fasteners are compounded by repeated repositioning of wall implements.
BRIEF SUMMARY OF THE INVENTION
The present invention is addressed to a wire-based system for hanging implements such as shelves and the like on a typical wall. The system achieves a substantial load bearing capacity without wall tear-out and with only a minimum sized wall entry. Intended particularly for use with so-called drywall surfaced wall structures, the system employs thin, wire-form hanging components which, preferably. are bifurcate structures with two, generally parallel legs extending from an integrally formed limiter portion. When used with a dedicated shelf supporting standard, channels for receiving the legs are predrilled in the standard at an acute angle with respect to the wall surface. Using the standard as a jig, the same angle is used to drill paired mounting channels through the wall. Thus, when the standard is mounted upon the vertical wall surface, it is supported by the wire bifurcate hanging components in a manner wherein the load imposed from a standard supported shelf exhibits an inwardly directed horizontal force vector component to assure structural stability of the shelf system.
Of additional interest with respect to the wire-based system, it is quite easy to remove the mounted standards from the wall. For a typical embodiment, a slight upward and outward lifting force is all that is required. Following such removal, only paired, very small diameter bores remain in the wall which are very easily covered or resurfaced. The load carrying capability of this wire-based hanging system is quite substantial. In this regard, the number of hanging components utilized to support a standard of a shelf-based system is selected with respect to the load to be imposed. Thus, the standards are produced with a plurality of the angularly oriented standard channels and drilling through these angularly oriented channels into the drywall surface requires only the most elementary of drilling tools. For example, a quite simple and thus disposable hand actuated drilling implement may be supplied with the assembly for the user. Load capacities are particularly enhanced with the utilization of a hanging component formed having relatively longer legs. This length is such that the legs will penetrate a drywall component and extend within the interior wall cavity to abut against the internal surface of the opposite side of the wall. As a consequence, a form of fulcrum and captured lever arm is evoked with the legs depending downwardly, for example, at about a 30° angle. The resulting structure is quite strong with very high load bearing capacity while producing only the noted very minimal disfigurement of the wall manifested by paired very small diameter channel holes.
A simplified shelf assembly is described in connection with the hanging components and standards. With this shelf arrangement, thin, flexible polymeric suspension components provided as straps are employed. These straps are configured as a continuous loop wrapped essentially about a standard between upper and lower connector locations. The straps are of a material having high resistance against strain in tension but remain quite flexible otherwise. A shelf is abuttably inserted within the loop defined by the straps and, because of the strap lengths, the loop becomes a right triangle for which the shelf is a base. With the arrangement, the shelf is compressibly engaged in abutment with the standards while the straps are retained in tension, and the mounting of a shelf to paired standards is manifestly simple.
The system of the invention permits the configuration of shelves for mounting within a comer or union between two intersecting walls. In one such self system, the hanging components are inserted through shelf support assemblies in a manner wherein they penetrate the walls at a 90 degree angle. However, because of the structuring of the shelf itself, the support assemblies are “locked” into position to provide an assured mounting integrity.
Other objects of the invention will, in part, be obvious and will, in part, appear hereinafter. The invention, accordingly, comprises a system and apparatus possessing the construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings.
REFERENCES:
patent: 560884 (1896-05-01), Anderson et al.
patent: 2206588 (1940-07-01), Tritt
patent: 2796158 (1957-06-01), Miles et al.
patent: 2909352 (1959-10-01), Van Buren, Jr.
patent: 2954125 (1960-09-01), Husted
patent: 3186364 (1965-06-01), Costantini et al.
patent: 3645486 (1972-02-01), Ferdinand et al.
patent: 3672624 (1972-06-01), Keller
patent: 36758
Beinecke Charles R.
Weaver Barbara J.
ADD +ON Industries, Inc.
Cuomo Peter M.
Mueller and Smith LPA
Tran Hanh V.
LandOfFree
Wire wall hanger system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wire wall hanger system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wire wall hanger system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2562417