Windshield for head-up display system

Optical: systems and elements – Optical aperture or tube – or transparent closure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S630000, C428S156000, C428S172000, C428S192000, C428S215000, C428S220000, C428S437000, C156S099000, C156S100000, C156S102000, C296S084100

Reexamination Certificate

active

06636370

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a windshield for a head-up display system and in particular to an automotive windshield functioning as the combiner for the head-up display system and having a wedged configuration for some selected portion of the windshield area, particularly in the viewing area of the head-up display, to eliminate double imaging and the interlayer used to provide the required wedged configuration.
2A. Technical Considerations
A head-up display system is a visual display arrangement that displays information to a viewer while he simultaneously views the road and objects outside his vehicle around and through the display. Head-up display systems are often incorporated into aircraft cockpits for pilots to monitor flight information. More recently the systems have been used in land vehicles such as cars, trucks and the like. The display is generally positioned so that the viewer does not have to glance downward to the vehicle dashboard and away from the viewing area in front of the vehicle as is required of a vehicle operator viewing vehicle operating information in a vehicle not having a head-up display.
A head-up display system generally includes a display projection system, a collimator, and a combiner. The projection system includes a light source that projects operating information through the collimator which generally aligns the projected light rays. The collimated light is then reflected off the combiner, which is in the vehicle operator's field of view. In this manner, vehicle information such as, for example, fuel information and vehicle speed is displayed within the operator's field of vision through the windshield and permits the operator to safely maintain eye contact with the road and other objects outside his vehicle while simultaneously viewing the displayed information. The reflected images of the display may be focused at a position anywhere from immediately in front of the vehicle to optical infinity.
Laminated windshields have been used as the combiner in a head-up display system to reflect a primary display image as taught in U.S. Pat. No. 2,264,044 to Lee. However, it has been observed that a secondary image is reflected off the outer surface of the windshield. This secondary image is superimposed over but offset from the primary image and reduces the overall image clarity.
It would be advantageous to have a windshield for a head-up display system which functions as a combiner and provides a clear display image without producing double images when viewing through the head-up display area, without distorting the view through other portions of the window not associated with the head-up display system, and without incorporating additional components with the windshield.
2B. Patents of Interest
U.S. Pat. No. 1,871,877 to Buckman teaches a display system having a glass sheet mounted on the windshield or dashboard which reflects instrumentation information to the vehicle operator.
U.S. Pat. No. 2,264,044 to Lee teaches a motor vehicle having an illuminated speedometer display that is reflected off the inboard surface of the vehicle windshield.
U.S. Pat. No. 2,641,152 to Mihalakis teaches a vehicle projection device wherein instrumentation information is reflected off of a reflecting screen on the inboard surface of the vehicle windshield. The reflecting surface has a satin finish and can be metal, glass, or plastic.
U.S. Pat. No. 2,750,833 to Gross teaches an optical display system for eliminating double images which occur in reflector type sights such as those used in aircraft gun sighting installations. A collimated light beam is polarized and separated into two ray branches. One of the two ray branches is then eliminated.
U.S. Pat. No. 3,276,813 to Shaw, Jr. teaches a motor vehicle display system which utilizes a highly reflective coating on the inboard surface of the vehicle windshield to reflect instrumentation information to the vehicle operator.
U.S. Pat. No. 3,446,916 to Abel teaches an image combiner utilizing a portion of the aircraft window. The inner surface portion of the window is coated with a partially reflective film.
U.S. Pat. Nos. 3,554,722, 3,591,261, and 3,647,285 to Harvey et al. teaches a double glazed glass window structure which eliminates objectionable fringe patterns produced in this structure when float glass of non-uniform thickness is utilized. The window structure includes a pair of spaced apart, float glass sheets one or both of which are tapered from a thick edge to an opposing thin edge. When both the glass sheets are tapered, the glass sheets are positioned such that a thick edge of one glass sheet is spaced from a thin edge of the opposing glass sheet.
U.S. Pat. No. 3,697,154 to Johnson teaches an optical viewing system in which images formed on the screen of a cathode ray tube (CRT) are reflected from a curved mirror having a general aspheric surface of revolution to a partially reflective combiner having two nonparallel hyperboloid surfaces, the combiner being positioned in the normal line of sight of an observer such that a collimated CRT image is reflected from the near surface of the combiner to the observer's eyes and the combiner being adapted to transmit light incident from the outside so that the CRT display is superimposed without parallax on the real world to provide a head-up display.
U.S. Pat. No. 3,870,405 to Hedges teaches a visor for use an optical element in a helmet-mounted sight having inner and outer surfaces being sections of focal paraboloids of revolution.
U.S. Pat. No. 3,899,241 to Malobicky, Jr. et al. teaches a windshield adapted for use in aircraft and includes a transparent reflective coating on the inboard surface in the center portion of the forward vision area to form a vision image receiving area. Vehicle information is reflected off the reflective coating to the vehicle operator.
U.S. Pat. No. 3,940,204 to Withrington and U.S. Pat. No. 4,218,111 to Withrington et al. teach an optical display system utilizing holographic lenses.
U.S. Pat. No. 4,261,635 to Freeman teaches a head-up display system including a holographic combiner positioned inboard of the vehicle windshield. The hologram is disposed substantially orthogonal to and midway along an axis between the observer's eye position and the projection optics so as to deviate light from an image produced by the projection optics to the observer eye with minimal field aberration.
U.S. Pat. No. 4,398,799 to Swift teaches a head-up display system which simultaneously records the pilot's view by reflecting the outside scene and the projected display by reflecting the outside scene and superimposed display off a mirror mounted on the pilot's helmet and recording the reflected view with a camera mounted on the pilot's helmet.
U.S. Pat. No. 4,613,200 to Hartman teaches a head-up display system which uses two parallel holographic optical elements to reflect instrumentation information to the vehicle operator. One of the elements is made part of or attached to the vehicle windshield.
U.S. Pat. No. 4,711,544 to Iino et al. teaches a display system for a vehicle wherein instrumentation information is reflected off the front glass of the vehicle so that the image display can be formed in a desired position, aligned with the line of sight of the driver without obstructing the front sight of the driver.
U.S. Pat. Nos. 4,787,711 and 4,892,386 and European Patent No. 229,876 to Suzuki et al. teach an on-vehicle head-up display device employing a catoptric system for a windshield glass of an automobile to project a display image onto an inner surface of the windshield glass, an optical system for letting a virtual image of the display image of the display means enter the windshield glass is adapted to make an angle formed by light beams of the virtual image entering the windshield glass less than a monocular resolving power and an optical means for correcting parallax of the light beams of the virtual image is provided between the optical system and the windshield

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Windshield for head-up display system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Windshield for head-up display system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Windshield for head-up display system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3114887

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.