Winding device having a winding shaft and additional bearings

Winding – tensioning – or guiding – Coil holder or support – Mounted coil holder or spindle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C242S598000, C242S598400, C242S599300, C242S545000, C242S546000

Reexamination Certificate

active

06338453

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a winding device, having a winding shaft, which can be inserted into and removed from the winding device, and a winding element and bearing journals protruding from both ends in a direction of a center axis of the winding shaft, wherein the winding device has two outer bearings for receiving the bearing journals for rotatable seating of the winding shaft in the winding device, and has an additional bearing for the winding shaft spaced apart to each outer bearing.
2. Description of Prior Art
Such winding devices are known in many variations and are used, for example, for winding a continuously fed web of material, such as a plastic foil, to form a so-called coil, which is wound on the winding shaft. Customarily a tube made, for example, of cardboard, is pushed on a winding element of the winding shaft, which forms a core of the subsequent coil.
A problem with the known winding devices is flexing of the winding shaft, so far unavoidable and considerable, between its seats formed at the bearing journals in end areas. This flexing has negative effects on the winding quality obtained.
Furthermore, at the start of the winding process, for example when the fed-in material begins to be wound, the winding shaft has the smallest diameter, its own diameter or the outer diameter of a tube pushed on the winding shaft. Because of this smallest diameter, the winding shaft reaches its greatest number of revolutions here. But this maximum number of revolutions is limited by the critical bending speed of the winding shaft, which is a result of the flexing of the shaft because of its own weight. But this critical bending speed to which the winding shaft can be accelerated at the start of the winding process, limits the efficiency of the winding device, so that a further increase in the critical bending speed of the winding shaft is desirable.
A winding device is known from German Patent Reference DE 44 39 908, wherein a compensating force is exerted at the shaft ends of the winding shaft, by means of which the flexing of the winding shaft can be minimized. It is proposed for this purpose to support the winding shaft by extendible cylinders via support rollers or bearing rings, and to simultaneously introduce the desired compensation force. However, with this known device it is disadvantageous that a separate energy source is always required for the cylinders and for generating the compensating force, which also requires a control and regulating device. Therefore the structure of the known device is elaborate and expensive. The known device can only be integrated with great difficulties into a winding device wherein the winding shafts need to be replaced by automation frequently and at high speed.
A support structure is known from German Patent Reference DE 196 36 184 A1, which is rotatably seated in a sort of a bearing basket in two bearings, which are axially spaced apart. Although the flexing of the winding shaft is reduced without additional energy or control outlay, a use of automated winding devices and the possibility of simple changing of such a winding shaft is not possible.
Furthermore, various solution suggestions for seating exchangeable shafts in a device, for example winding shafts in a winding device, are known from the prior art, such as German Patent Reference DE-AS 1 009 336, U.S. Pat. No. 3,038,680, Great Britain Patent Reference GB 1 136 137 and German Patent Reference DE 75 36 100. However, it is a property of all these known to have no provision for affecting, or respectively reducing, the flexing of the winding shaft, which leads to the problems explained.
SUMMARY OF THE INVENTION
It is one object of this invention to provide a winding device of the type mentioned at the outset, wherein flexing of the winding shaft is minimized with small outlay in order to increase the critical bending speed of the winding shaft, which has advantageous results on the efficiency of the winding device and to also improve the winding quality of the winding device with the reduction of the flexing, wherein this winding shaft preferably can be inserted into and removed out of the winding device in an automated manner, i.e. it should be exchangeable.
In accordance with this invention, this object is attained with a winding device having the characteristics described in this specification and in the claims.
According to this invention, each outer bearing is equipped with a coupling device. The coupling devices are displaceable along a center axis of the winding shaft and can be connected with or disconnected from the respective ends of the bearing journals. Additional bearings between the ends of the bearing journals, which can be connected with the outer bearings and the winding element on the bearing journal of the winding shaft are designed as inner bearings.
According to this invention, for rotatable seating of the winding shaft, an outer bearing is arranged at the end of each bearing journal and a respective inner bearing is arranged, spaced apart, at the outer bearings on a side facing away from the end of the bearing journal, so that the winding shaft is quadruple seated symmetrically in the winding device. Thus, the flexing of the winding shaft seated in the winding device is reduced to a minimum. Because of the quadruple symmetrically seated winding shaft in a dual indeterminate system, tensions, and moments resulting therefrom, are caused within the winding shaft between the bearing points, which counteract the flexing of the winding shaft under its own weight, so that flexing of the winding shaft is minimized in a surprisingly simple way.
Within the scope of this invention, a symmetrical seating is understood to be an arrangement of the bearings which is symmetrical with respect to the center of the winding shaft.
To be able to remove the winding shaft from the winding device when a desired winding length of the fed-in web of material is reached, and to replace it by a further insertable winding shaft without an interruption of the feeding of the material web, the outer bearings are equipped with respective coupling devices, which are displaceable along the center axis of the winding shaft and can be connected with or disconnected from the respective ends of the bearing journals of the winding shaft. The additional bearings used as inner bearings are arranged between the ends of the bearing journals, which can be connected with the outer bearings, and the winding element on the bearing journals of the winding shaft. From there, the winding shaft is permanently equipped with its inner bearings and, when inserted into the winding device, is also connected with the respective outer bearings of the winding device by the coupling devices acting on the winding shaft. Thus, the quadruple symmetrical seating in the winding device in accordance with this invention, and minimization of the flexing of the winding shaft resulting therefrom, is achieved. When the winding shaft is to be removed again out of the winding device, the outer bearings are separated from the winding shaft by the coupling device, so that the outer bearings can be removed from the winding device in a manner known per se and exchanged for another winding shaft, which can be inserted into the winding device.
With this design it is also possible to use winding shafts with different diameters of the winding element, for example the widely used 3″ and 6″ winding shafts, in the winding device of this invention. Only the bearing journals of the winding shafts must be designed the same for this purpose.
The inner bearings of the winding shaft are each formed by a bearing sleeve pushed on the area of the bearing journal facing away from the coupling device, and are seated, rotatable around the bearing journal, using seating elements. Here, the bearing sleeve forms the outermost bearing housing of the inner bearing, while the bearing journal forms the inner housing of the inner bearing. It is also possible to push at least one inner sleeve, wh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Winding device having a winding shaft and additional bearings does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Winding device having a winding shaft and additional bearings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Winding device having a winding shaft and additional bearings will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2854777

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.