Prime-mover dynamo plants – Fluid-current motors – Wind
Reexamination Certificate
2003-01-29
2004-10-05
Ponomarenko, Nicholas (Department: 2834)
Prime-mover dynamo plants
Fluid-current motors
Wind
C290S044000, C416S22300B
Reexamination Certificate
active
06800956
ABSTRACT:
BACKGROUND
This invention relates to providing a system for the generation of electrical power using an improved 900-watt class wind turbine system. For centuries, man has harnessed the almost unlimited power of the wind. Today, wind-driven systems to generate electrical power range in size from large multi-megawatt utility class units to small battery charging systems used at remote monitoring stations.
One class of wind turbines having a great potential for increased utilization falls in about the 600 to 900 watt range. Turbines in this power class are of suitable capacity to generate electrical power for individual residences (and similar applications having small to moderate power requirements).
Typically, the principal limiting factor in the general application of small-scale wind generation is cost. Today, the cost of on-site wind power generation typically exceeds the cost of power derived from the most common traditional power generation sources, i.e., utility-scale power grids. Other limiting factors include undesirable noise generated by traditional turbine blade assemblies. History has shown that the over-reliance on fossil fuels as the primary means of electrical power production is increasingly problematic in a volatile world energy market. It is clear that improvement in the efficiency, cost and reliability of small to medium on-site wind generation systems would benefit many.
Wind turbine blades made of wood or other similarly heavy materials require relatively high initial wind speeds to start up and cannot take advantage of lower wind speeds to generate power. Wind turbine blades made of plastic or other similarly light materials often are not stiff enough to prevent significant loss of efficiency when the shape of the blade is deformed by the wind. Additionally, turbine blades that are not stiff enough can produce vibrations that can result in increased maintenance costs and undesirable noise. Wind turbine blades reinforced with carbon fiber can be made stronger and lighter than traditional materials but are expensive to produce, given the cost of materials and current manufacturing methods. In such wind turbine systems of such intermediate size (i.e., about 600 to 900 watts), every gram of weight and inertial mass which can be saved by improved blade technology tends to result in less costly turbines and supporting structures to achieve reliability.
In the past, the tower support structures, which elevate the turbine above the ground, have been relatively difficult to assemble/erect. In the past, towers have been assembled by connecting segments of pipe together with threaded fittings, which are difficult to align correctly, given the typical long, unwieldy segments of pipe. Also, the threads can become stripped in the assembly process, causing further difficulties. Also, some towers have failed (for example, by being blown over) in high winds when the lateral supports (guy wires) have become detached at the connection to the tower mast. In the past, guy wire connections to the tower mast have been provided by welding loops of rebar or similar pieces of metal to fittings, and threading the guy wire through the loops. In the past, these connections have failed at the welds.
In use, wind turbine generators build up heat, which must be dissipated to ensure the proper, efficient and reliable continued functioning of the generator. In the past, generators have been cooled by various means, including both active measures, such as powered fans, and passive measures, such as heat radiating vanes. The disadvantage of active cooling measures is that they tend to be expensive; whereas, the disadvantage of passive measures is that they tend to be less effective in dissipating heat quickly.
OBJECTS OF THE INVENTION
A primary object and feature of the present invention is to provide a system for the production of electricity using power derived from the wind.
It is a further object and feature of the present invention to provide such a system that has a lower cost to produce and operate than other alternate power generation systems. It is a further object and feature of the present invention to provide such a system that has high power generation efficiency.
It is a further object and feature of the present invention to provide such a system that produces a low level of sound during operation.
It is a further object and feature of the present invention to provide such a system that is relatively easy to install and maintain.
It is a further object and feature of the present invention to provide such a system that can operate in low wind speed conditions.
It is a further object and feature of the present invention to provide such a system that resists failure in high winds.
It is a further object and feature of the present invention to provide such a system that allows relatively versatile and simple erection and installation.
It is a further object and feature of the present invention to provide such a system that efficiently cools the generator.
A further primary object and feature of the present invention is to provide such a system that is efficient, inexpensive, and handy. Other objects and features of this invention will become apparent with reference to the following descriptions.
SUMMARY OF THE INVENTION
In accordance with a preferred embodiment hereof, this invention provides a wind-driven system, for producing electric current, comprising, in combination: at least one frame adapted to swivel about a substantially vertical axis, comprising at least one front-portion adapted to extend forwardly into a wind-flow direction and at least one rear-portion adapted to extend rearwardly downwind from such at least one front portion; at least one guide-vane connected to such at least one frame and adapted to guide such at least one frame with respect to the wind-flow direction; at least one magnetic-field producer, comprising at least one rotor adapted to rotate about at least one rotational axis; at least one alternator, connected to such at least one frame, adapted to produce electric current, comprising at least one rotor shaft adapted to support such rotor for rotation of such at least one magnetic-field producer; wherein such at least one magnetic-field producer and such at least one alternator together comprise at least one electric current generator; and at least one airfoil blade, mounted to at least one end of such at least one rotor, adapted to drive such at least one rotor; and at least one nose-cone, extending forwardly from such at least one front-portion, adapted to modify air-flow through such wind-driven means; wherein such at least one nose-cone comprises at least one peripheral relief adapted to permit augmentation of air flow in cooling relationship with such at least one electric current generator.
Moreover, it provides such a system wherein: such at least one airfoil blade comprises at least one longitudinal axis and at least one skin and at least one interior; such at least one skin substantially comprises axial reinforcers adapted to reinforce such at least one skin substantially unidirectionally substantially parallel to the at least one longitudinal axis; and such at least one interior comprises at least one foam element comprising at least one material associated with enabling substantial outward pressure on such at least one skin during curing of such at least one foam element. Additionally, it provides such a system wherein: such at least one airfoil blade comprises at least one longitudinal axis and at least one skin and at least one outward interior and at least one inward interior; wherein such at least one skin substantially comprises axial reinforcers adapted to reinforce such at least one skin substantially unidirectionally substantially parallel to the at least one longitudinal axis; and wherein such at least one inward interior comprises vermiculite.
Also, it provides such a system, further comprising: at least one supporting tower for such at least one frame; wherein such at least one supporting tower comprises at least one first length
Bartlett Lexington
Ponomarenko Nicholas
LandOfFree
Wind power system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wind power system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wind power system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3327617