Wide tape drive for a wide tape holding frame

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Tape record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S093000

Reexamination Certificate

active

06788492

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a tape drive for wide magnetic recording tape.
2. Description of the Prior Art and Related Applications
The use of magnetic tape as a medium for data recording has the significant advantages of a relatively low cost and a relatively large recording surface area. Nevertheless, conventional magnetic tape has certain disadvantages associated therewith.
A first of these disadvantages is that tape is a sequential medium, which means that when a data transfer head is located at a beginning of a tape, it is necessary for the tape to be transported along its entire length in order to retrieve (or re-write) information at the end of the tape.
A second disadvantage is that, due to the desire and necessity of storing as much data as possible within an available tape area, the data transfer head technology as well as the recording media technology are pushed to their quality limits.
Moreover, many existing drives and cartridges must be designed within specified form factors, in order to satisfy standardization requirements. As an increasing number of functions become available, which are desired to be accommodated in a drive or on a tape, data storage area or other functions must be sacrificed to accommodate the new, additional functions, or some type of compromise must be reached in the overall design.
Among the more important market requirements which are expected in the near future for data storage on tape is that the need for higher storage capacity will continue to increase, at an even faster rate than previously. As discussed below, for example, the storage capacity of a currently available single cartridge is not sufficient for unattended backup during a longer period of time, and therefore so-called autoloader systems have been developed to automatically insert and remove a number of cartridges in a sequence.
Further market requirements are expected to be a need for faster time to access data, a need for an increased data transfer rate, a lower cost per MB (megabyte) and an overall improved quality and reduced cost.
As noted above, the limited data storage capacity of conventional cartridges has resulted in the development of autoloader systems. Conventional autoloader systems, however, are not a satisfactory solution to the problem of storing a large amount of data in an unattended backup procedure over a relatively long period of time. Several disadvantages exist with regard to currently available autoloader systems.
Because such autoloader systems make use of a large number of cartridges, the cartridges are made relatively small, and therefore have a limited space available for use for data storage. Typically, six to ten of such cartridges must be put in a magazine in order to have sufficient storage area (capacity). Because of the relatively small size of the cartridges, the drive is also made small, in order to match standardized form factors. The drive is disposed in a system housing, which also contains robotics, electronics and software needed for loading an unloading the cartridges.
The relatively large number of components, and therefore the relatively high cost, associated with conventional autoloader systems makes the use of such systems an unattractive alternative for a customer who merely wants long term data backup.
To address these problems, a tape cartridge and a drive for extremely wide tape are disclosed in co-pending U.S. application Ser. No. 09/691,165, filed Oct. 19, 2000 (now U.S. Pat. No. 6,522,500, the teachings of which are incorporated herein by reference. The tape cartridge and drive described therein accommodate tape having an extremely wide width, such as a width that is greater than approximately 24 mm, or in a range between approximately 24 mm and approximately 127 mm.
The width of this extremely wide tape, therefore, is greater than that of a conventional magnetic recording tape by a factor of 6 to 10 times. Because the tape has this extremely wide width, the total tape length can be made significantly shorter while still making the same total area available for data storage. Making the tape shorter, however, requires less time for winding and unwinding the tape from the hubs on which it is carried in order to access data at a particular location on the tape.
It is important, however, that the housing for accommodating such extremely wide tape have the same, or substantially the same, form factor as conventional recording cartridges, so as to be accommodated in the openings for conventional tape cartridges in tape drives and auto loaders and magazines. This means that the axes of rotation of the tape hubs in cartridges for accommodating extremely wide tape will proceed parallel to a “longer” dimension of the cartridge housing, rather than perpendicular to the shortest dimension (height) as in a conventional cartridge housing. Given a length of extremely wide tape which is necessary to provide the same total area available for recording data on the tape as a conventionally sized tape, such a length of extremely wide tape can be accommodated in a housing having a height which is comparable to the height of a conventional tape cartridge only when the tape is substantially evenly distributed in respective tape packs on the two hubs in the housing. When any significant amount of extremely wide tape is wound onto one of the hubs, the diameter on the tape pack on that hub increases beyond the standard height of a conventional cartridge housing.
This problem could be addressed by simply providing a lesser length of extremely wide tape in the cartridge, so that even when all of the tape is wound on one tape hub in one tape pack, the diameter of that tape pack still would not exceed the height of a standard tape cartridge.
This would defeat one of the advantages of employing extremely wide tape, however, by decreasing the total area available for recording data.
To address this problem a tape cartridge is disclosed in co-pending U.S. application Ser. No. 09/859,328, filed May 16, 2001 (now U.S. Pat. No. 6,545,840, which accommodates an amount of extremely wide tape therein having a total area available for data recording which is substantially the same as the area available for data recording in a conventional tape cartridge, and which has a form factor which is substantially the same as the form factor for a conventional tape cartridge. The tape cartridge disclosed in this co-pending application has a housing with two tape hubs rotatably mounted therein with wide magnetic recording tape wound thereon for winding and unwinding between the two hubs in a tape transport direction, with the housing being composed of first and second housing parts which are movable relative to each other in a direction perpendicular to the tape transport direction and which is also perpendicular to the rotational axes of the hubs, to accommodate an increase in diameter of the tape pack on one of the hubs which arises as the extremely wide tape is wound onto that hub. The housing thus can expand in the movement direction.
This problem also is addressed in a co-pending United States application filed simultaneously herewith having Ser. No. 10/052,839 (now U.S. Pat. No. 6,450,434 which discloses a tape holder formed by a four-sided frame in which two tape hubs are disposed, with wide magnetic recording tape wound thereon for winding and unwinding between the hubs in a tape transport direction. The frame therefore does not form a housing in the conventional sense because it does not have a top and a bottom which are permanently fixed to the sides of the frame. The frame may be provided with a top cover and a bottom cover for protecting the recording tape from dust and other contamination during storage, however, if such covers are used, they do not have a permanent connection to the frame, and are only held in place by a snap arrangement, so that during use of the frame in the drive, the covers are separated from the frame and therefore the frame is open at the top and at the bottom, and the diame

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wide tape drive for a wide tape holding frame does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wide tape drive for a wide tape holding frame, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide tape drive for a wide tape holding frame will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.