Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2002-04-12
2004-01-06
Meier, Stephen D. (Department: 2853)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S049000
Reexamination Certificate
active
06672706
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
FIELD OF THE INVENTION
This invention relates to a wide format pagewidth inkjet printer. More particularly, this invention relates to a print assembly for a wide format pagewidth inkjet printer and to a wide format pagewidth inkjet printer.
REFERENCED PATENT APPLICATIONS
This application is a continuation-in-part application of U.S. application No. 09/112,767, now U.S. Pat. No. 6,416,167. The following U.S. applications and patents are hereby incoroorated by reference: 6,227,652, 6,213,588, 6,213,589, 6,231,163, 6,247,795, 6,394,581, 6,244,691, 6,257,704, 6,416,168, 6,220,694, 6,257,705, 6,247,794, 6,234,610, 6,247,793, 6,264,306, 6,241,342, 6,247,792, 6,264,307, 6,254,220, 6,234,611, 6,302,528, 6,283,582, 6,239,821, 6,338,547, 6,247,796, 6,390,603, 6,362,843, 6,293,653, 6,312,107, 6,227,653, 6,234,609, 6,238,040, 6,188,415, 6,227,654, 6,209,989, 6,247,791, 6,336,710, 6,217,153, 6,416,167, 6,243,113, 6,583,281, 6,247,790, 6,260,953, 6,267,469, 6,273,544, 6,309,048, 6,420,196, 6,443,558, 6,439,689, 6,378,989, 6,406,129, 6,505,916, 6,457,809, 6,457,812, 6,428,133, 6,362,868, 6,443,555, 09/422,893, 09/113,122, now allowed 09/425,420, now abandoned 09/693,703, now allowed 09/693,727, now abandoned.
BACKGROUND OF THE INVENTION
High volume, high resolution printing is an objective that has been sought by the manufacturers of wide format printers for some time. Wide format printers have been available to the public for many years. Examples of popular wide format printers are the Hewlett Packard (HP) 1000/5000, the HP 3000/3500, the Epson 7000/10 000 and many others.
These printers all have a traversing printhead that traverses a print medium while depositing ink on the medium. Applicant believes that these printers suffer from inherent disadvantages, particularly when attempts are made to utilize the design of such printers in order to achieve faster printing speeds at high resolutions.
Central to the problem of achieving high printing speeds is the ability to achieve a printhead that is capable of generating the necessary number of ink dots at a suitable rate. Further, in order to achieve accurate printing, it is desirable that a row or band of the image be created in as little print cycles as possible, and preferably in a single print cycle. It follows that it is undesirable for a traversing printhead to be used in an attempt to achieve high print speeds and that a single printhead incorporating a suitable number of inkjet nozzles is required.
Thermal printheads also referred to as bubble jet printheads and piezoelectric printheads have been available for some time. These suffer from excessive heat build up and energy consumption and have therefore been found by the applicant to not be suitable for use in a pagewidth configuration. A number of disadvantages associated with such printheads are set out in U.S. Pat. No. 6,443,555.
The applicant has developed a printhead chip that is capable of producing images having a resolution as high as 1600 dpi. These chips are manufactured using integrated circuit fabrication techniques. Details of the chips are provided in the above referenced applications and patents. Applicant believes that these printhead chips are extremely suitable for use in wide format printers. The reason for this is that such chips operate at extremely high speeds due to the large number of nozzle arrangements required in a single chip and due to the fact that such chips can be driven at an extremely high cyclical rate.
The Applicant has been faced with a number of difficulties in order to achieve the effective use of such printhead chips in wide format printers. One particular difficulty identified by the Applicant is the effective control of a number of such printhead chips to achieve accurate printing. This control must incorporate the use of effective image processing tools that are capable of processing stored images at a rate that corresponds with the physical rate of printing achievable by a number of the above printhead chips.
Another difficulty that faces the manufacturers of wide format printers are the problems associated with heat build up. This can often result in the necessity for expensive heat extraction devices that add to the complexity of the printer.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, there is provided a print assembly for a wide format pagewidth inkjet printer, the print assembly comprising
an elongate carrier that is mountable on a support structure of the printer and is positioned an operative distance from a platen of the printer;
a number of printhead chips that are mounted on the carrier, the printhead chips being provided in a number and configuration such that the printhead chips define a printing zone between the carrier and the platen, the printing zone having a length of at least 36 inches (914 mm), each printhead chip being of the type that incorporates a plurality of nozzle arrangements, each nozzle arrangement being in the form of a micro electromechanical system to achieve the ejection of ink from the nozzle arrangement; and
control circuitry that is positioned on the carrier and is operatively connected to the printhead chips to control operation of the printhead chips.
According to a second aspect of the invention, there is provided a wide format pagewidth inkjet printer that comprises
a support structure;
a platen positioned in the support structure;
a print assembly positioned operatively with respect to the platen, the print assembly comprising
an elongate carrier that is mounted on the support structure of the printer and is positioned an operative distance from the platen;
a number of printhead chips mounted on the carrier, the printhead chips being provided in a number and configuration such that the printhead chips define a printing zone between the carrier and the platen, the printing zone having a length of at least 36 inches (914 mm), each printhead chip being of the type that incorporates a plurality of nozzle arrangements, each nozzle arrangement being in the form of a micro electromechanical system to achieve the ejection of ink from the nozzle arrangement; and
control circuitry that is positioned on the carrier and is operatively connected to the printhead chips to control operation of the printhead chips; and
a feed mechanism that is positioned on the support structure for feeding a print medium though the printing zone.
The invention is now described, by way of example, with reference to the accompanying drawings. The following description is not intended to limit the broad scope of the above summary.
REFERENCES:
patent: 4706130 (1987-11-01), Yamakawa
patent: 4947192 (1990-08-01), Hawkins et al.
patent: 5057854 (1991-10-01), Pond et al.
patent: 5107276 (1992-04-01), Kneezel et al.
patent: 5160945 (1992-11-01), Drake
patent: 5218754 (1993-06-01), Rangappan
patent: 5412410 (1995-05-01), Rezanka
patent: 5565900 (1996-10-01), Cowger et al.
patent: 5719602 (1998-02-01), Hackleman et al.
patent: 5867183 (1999-02-01), Cornell et al.
patent: 6312114 (2001-11-01), Silverbrook
patent: 0 842 777 (1998-05-01), None
patent: 40400105 (1992-01-01), None
patent: WO 01/42020 (2001-06-01), None
Do An H.
Meier Stephen D.
Silverbrook Research Pty Ltd
LandOfFree
Wide format pagewidth inkjet printer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wide format pagewidth inkjet printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide format pagewidth inkjet printer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3189550