Optical waveguides – With optical coupler – Input/output coupler
Reexamination Certificate
2003-01-03
2004-05-25
Ton, Toan (Department: 2871)
Optical waveguides
With optical coupler
Input/output coupler
C385S122000
Reexamination Certificate
active
06741773
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a device used for chromatically dispersing lightwave signals in fiber optics, and more specifically to a wide-bandwidth chirped fiber Bragg grating that has a low delay ripple amplitude.
BACKGROUND OF THE INVENTION
Modern communication system providers are striving to increase the capacity of their systems to satisfy the rapidly growing exchange of information around the world. Increasing the data rate of a single wavelength channel is one strategy to increase the throughput on optical fibers. However, this approach is limited in that the data rate for a single optical channel will eventually reach practical limitations. An important strategy to further increase the available bandwidth is to add multiple wavelength channels. Multiple wavelength systems are referred to as being wavelength division multiplexed (WDM).
Optical communications systems are available with single-channel data rates at 10 Gbit/s and faster. To accommodate the spectral bandwidth of these signals, the channels in a WDM system are commonly spaced at 100 GHz, or ~0.8 nm in the 1550 nm wavelength range. A device would have to be useful over bandwidths greater than ~0.8 nm to be a truly multi-channel device in these WDM systems. Ideally a device would operate over a full communications band of wavelengths, so systems could be designed for any WDM or modulation scheme without needing to accommodate a specific dispersion correction module. Current communications bands are defined by optical amplifier operating ranges; for instance, the “C” band covers ~1530 nm to ~1560 nm and the “L” band covers ~1570 nm to ~1610 nm.
In these optical communications systems, short pulses of optical energy are sent through optical fibers to transmit information. These optical data pulse are comprised of a spectrum of wavelengths. Generally speaking, an unchirped pulse of duration &tgr; has a spectral width of ~1/&tgr;, e.g., a ~1 nanosecond (10
−9
second) pulse has a ~1 GHz (10
9
Hz) spectral width. As a pulse travels along standard singlemode fiber in the ~1550 nm range, the shorter wavelength components travel faster than the longer-wavelength components. This effect, called chromatic dispersion, broadens the pulse to the point that it eventually interferes with neighboring pulses in a pulse train and introduces errors in the detected data stream. A number of solutions have been proposed for this problem, but only dispersion-compensating fiber (DCF) and chirped fiber gratings have been considered seriously as potential candidates for deployment.
Dispersion-compensating fiber has high levels of dispersion of opposite sign to that of standard fiber. To compensate for the dispersion introduced by an 80-km span of standard fiber, one would have to concatenate a ~16-km length of DCF into the system. These compensation modules are bulky, and due to the fiber design, suffer high optical attenuation and increased optical nonlinear effects. However, DCF is used today since no serious alternative exists.
Fiber Bragg Gratings (FBGs) have emerged as a promising solution for dispersion compensation. An FBG is an optical fiber or other optical waveguide with periodic, aperiodic or pseudo-periodic variations of the refractive index along its length in the light guiding region of the waveguide. Gratings are usually written in optical fiber via the phenomenon of photosensitivity. Photosensitivity is defined as the effect whereby the refractive index of the glass is changed by actinic radiation-induced alterations of the glass structure. The term “actinic radiation” includes visible light, UV, IR radiation and other forms of radiation that induce refractive index changes in the glass. Typically an interferogram of UV radiation is made and then a photosensitive fiber is placed into it. The period of the resulting FBG in the fiber is the period of the interferogram scaled by the waveguides refractive index.
To function as a dispersion compensator, the grating period of an FBG is chirped to reflect lagging wavelengths before faster wavelengths, which must travel further into the grating before they are reflected. An optical circulator is used to separate the input of the device from the output. A dispersion compensating grating (DCG) module recompresses a data pulse that had been corrupted by chromatic dispersion, and optical system performance is enhanced. The longer the grating, the greater the DCG compression factor and the wider the bandwidth of the device.
As a practical matter, long length gratings for dispersion compensation are not available, since extreme tolerances must be maintained to manufacture quality long length gratings. Fabrication errors in chirped gratings create ripples in the group delay curve and thus inaccuracies in the dispersion correction. The impact of these ripples on optical system performance is poorly understood, but some system designers have predicted that these ripples must be less than ~40 ps peak-to-peak for a DCG to be useful as dispersion compensators in most systems. However, the magnitude of the ripple needed to make a useful FBG dispersion correction device has not been verified. A ripple amplitude of ~40 ps peak-to-peak can be caused by a 20% variation in the FBG UV-induced index change, a ~0.3% dimensional change in a fiber core, or a ~4 pm error in grating pitch. Given that the silicon-oxygen inter-atomic spacing in glass is ~160 pm, it has been widely believed that holding these tolerances during grating inscription is not possible, and that fiber fabrication tolerances are limiting the quality of the gratings that they produce.
In 1995, a Swedish research group reported the fabrication of a long-length FBGs by stitching smaller FBGs together. A small grating was written, the fiber was translated by a grating period through a UV-interferogram with a high-precision linear stage, and then the fiber was irradiated again. This process was continued until a grating of the desired length was made. With their system, this group reported it fabricated gratings of up to 50 cm in length. Since this announcement, other groups have extended this work and have reportedly fabricated gratings up to 2.5-m-long. The range of motion of available high-precision staging has limited the length these FBGs.
Several groups have adapted stitching methods to make chirped long length gratings, but stitching errors have caused these gratings to have delay ripple amplitudes that are far too large for use as dispersion compensators in optical communications systems. To implement a stitching technique, one must have precise knowledge of a fiber location relative to the writing interferogram. The accuracy of location measurements is limited by the motion stage encoder—usually interferometer based, which is susceptible to several degradations, such as interpolator inaccuracies, noise in edge detection electronic circuitry, and random fluctuations in received interpolator-laser light.
Several feasibility studies have been completed where long-length FBGs, fabricated by stitching, have been used successfully at specific wavelengths as dispersion compensators in optical communication systems. Since the FBG delay ripple imposed very large distortion-derived system penalties at most wavelengths, the wavelength of the transmitting laser in the communication system had to be adjusted in these studies to obtain reasonable system performance.
A common procedure for determining chromatic dispersion of a device is the modulation-phase shift method, as described in Chapter 12 of Fiber Optic Test and Measurement (ed. D. Derickson, Prentice Hall PTR, NJ, 1998, ISBN #0-13-534330-5). The output of a narrowband, tunable optical source is intensity modulated and applied to the device under test. The transmitted (or reflected) signal is detected and the phase of its modulation is measured relative to the electrical modulation source. The phase measurement is repeated at intervals across the wavelength range of interest. The curve of the relative group delay is constructed by a
Beauchesne Gerald A.
Brennan, III James F.
Byrd Chad H.
Elder Dale E.
Hernadez Edward
3M Innovative Properties Company
Caley Michael H.
Rosenblatt Gregg H.
Ton Toan
LandOfFree
Wide-bandwidth chirped fiber bragg gratings with low delay... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wide-bandwidth chirped fiber bragg gratings with low delay..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide-bandwidth chirped fiber bragg gratings with low delay... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3270685