Wide-band image enhancement

Image analysis – Applications – 3-d or stereo imaging analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S195000, C382S199000, C382S260000, C382S266000, C382S274000, C345S632000

Reexamination Certificate

active

06611618

ABSTRACT:

BACKGROUND
This invention relates to methods and apparatus for image processing and more particularly to image enhancement. In particular, the invention relates to methods and apparatus for the enhancement of both video images of natural scenes that contain a wide range of spatial frequencies and of real-world views of natural scenes.
Traditional image enhancement methods suffer from a number of drawbacks. Many traditional image enhancement methods can not effectively enhance images over a wide band of spatial frequencies. For example, one technique enhances an image by changing its spatial frequency content through manipulation of the coefficients of a discrete cosine transform (“DCT”) of the image. The method segments the image into 8×8 pixel sections and obtains the cosine transform of each section. This technique fails to capture low frequency components that arise as a result of features that have significant variations in luminance mainly over an area larger than an 8×8 pixel section. Other techniques process an image in the spatial domain. Such techniques typically enhance the image only over a narrow range of frequencies. See E. Peli, “Limitations Of Image Enhancement For The Visually Impaired,” Optometry and Vision Science, vol. 6, pp. 15″24 (1992); and E. Peli, E. Lee, C. L. Trempe, S. Buzney, “Image Enhancement For The Visually Impaired: The Effects Of Enhancement On Face Recognition”, Journal of Optical Society of America, vol. 11 pp. 1929-1939 (1994).
Therefore, such traditional image enhancement techniques are not suitable for enhancing the images of many natural scenes that contain a wide range of spatial frequencies. Further, human observers detect moving objects that contain a wide band of frequencies more readily than those with a narrow band of frequencies. Thus, the traditional techniques are not appropriate in systems for assisting detection of moving objects, or in systems that provide real-time viewing enhancement of natural scenes.
Traditional methods also can not readily enhance an image while the size of the image changes. For example, the viewer of a digital television display could desire to follow the image of an object that undergoes a large change in its size while maintaining a selected degree of enhancement. The ability to enhance a wide range of frequencies is crucial in such applications. Traditional techniques, such as a DCT method or other band-limited methods are not appropriate for such applications because they provide a limited range of spatial frequencies of the image.
In addition, traditional enhancement methods, both in the spatial domain and in the frequency domain, typically manipulate a large fraction of pixels. As a result, their use in the enhancement of color pictures requires tracking the color content of many pixels while the computation changes the luminance of those pixels.
Accordingly, it is an object of this invention to provide methods and apparatus for enhancing images over a wide band of spatial frequencies.
It is another object of the invention to provide methods and apparatus that can readily enhance such images over a reasonable range of image sizes.
It is yet another object of the invention to provide methods and apparatus for real-time viewing enhancement of natural scenes.
It is a further object of the invention to provide methods and apparatus for better enhancement of color pictures.
It is yet a further object of the invention to provide methods and apparatus for expanding field of view of a patient suffering from peripheral field loss.
The invention is next described in connection with illustrated embodiments. It will, however, be obvious to those skilled in the art that various modifications can be made in the embodiments without departing from the spirit or scope of this invention.
SUMMARY OF THE INVENTION
The methods and apparatus according to this invention modify an image by 1) locating certain features of the image, such as the boundaries of objects in the image, 2) manipulating such located features to obtain modified features, and 3) adding the modified features to the original image. In particular, one embodiment of the invention employs a two-dimensional Hilbert transform of the image data to create a two-dimensional function, a so-called energy function, whose local maxima correspond to points lying on the boundaries between regions of marked difference in luminance, i.e., edges, or to points corresponding to peaks or troughs in luminance, i.e., bars. The invention further provides techniques to interconnect these maxima, thus delineating the desired features.
An application of this invention is to improve the visibility of video images for people with visual impairment, e.g., cataracts or macular degeneration. In particular, one embodiment of the present invention allows real-time image processing and enhancement of the real-world view for the visually impaired. This embodiment includes a dedicated microprocessor, programmed to extract the boundaries of objects in the field of view, according to the methods of the invention from data inputted from a digital camera. This embodiment also incorporates video equipment to project extracted features onto screens. These screens can be integrated in a wearable real-time image enhancement apparatus, such as a head mounted display (“HMD”) display unit.
Another application enhances the real-world view, under reduced visibility conditions such as fog, by projecting the enhanced features, obtained from non-visual sensors, e.g., infrared or radar, on heads-up displays (HUD) of an airplane or of a car windshield. Another application of this invention is to improve the visibility of television images for individuals with visual impairment. Yet other applications relate to the enhancement of satellite and reconnaissance pictures or other military imaging devices, and to the delineation of features of interest in such pictures.
The invention is typically practiced on a digital image that consists of a discrete two-dimensional map of luminance. Some embodiments of the invention represent such images by two dimensional matrices. The invention employs an extension of well known methods for calculating the Hilbert transform of a function in one dimension to obtain a discrete two-dimensional Hilbert transform of a function of the image data.
It is well understood that the one-dimensional Hilbert transform of a function of a single variable can be calculated by 1) obtaining the Fourier transform of the function, 2) obtaining a modified transform function whose values are zero at points where its independent variable is less than zero, and whose values are those of the Fourier transform at points where its independent variable is larger than zero. A third step is to obtain the inverse transform of this modified transform function.
One preferred embodiment of the invention obtains the two-dimensional Hilbert transform of the image data by 1) computing the two-dimensional Fourier transform of the image, 2) obtaining a new two-dimensional transform function whose values in a selected arbitrary contiguous half of the two-dimensional Fourier plane are zero, and whose values correspond to those of the two-dimensional Fourier transform of the image in the other half, and 3) obtaining the inverse Fourier transform of the modified transform function. The real part of the complex inverse Fourier transform of the modified transform function corresponds to the original image and the imaginary part corresponds to the Hilbert transform of the image.
One preferred embodiment of the invention combines the image data with the Hilbert transform of the image data to obtain a new two-dimensional function, a so-called energy function. In particular, the procedure for forming the energy function calls for obtaining the square root of the Pythagorean sum of the image data and of the values of the Hilbert transform at each point, e.g., at each pixel of a digital image.
One embodiment of the invention utilizes the positions of the peaks of the energy function to locate the visua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wide-band image enhancement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wide-band image enhancement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide-band image enhancement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113584

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.