Wide area remote telemetry

Communications: electrical – Continuously variable indicating – With particular transmitter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870020, C340S637000, C073S273000

Reexamination Certificate

active

06366217

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to the fields of automatic meter reading of electric, gas, water meters and other systems, automatic reading of flow data, monitoring of such usage, and distribution of information thereon.
The need for near real-time information is becoming critical to the efficient operation of many types of industries. This invention addresses a need for information from remote monitoring locations. This disclosure will center on preferred embodiments of a monitoring system for the electrical and gas utility industry, although this monitoring system could be used for other areas such as gas pipeline metering, pipeline monitoring, water system monitoring, security systems, vending machines, energy control devices, or other areas where remote monitoring is necessary.
The need for near real-time information from remote locations is becoming more pronounced due to the deregulation of several industries. For the utility industries, deregulation means an increase in competition which demands increased efficiencies in the utility systems. These increased efficiencies require better information about, and better control over, the systems involved. Increased efficiency heightens the need for near real-time information monitoring. Thus, the utilities need the ability to obtain near real-time information on consumer demand, supply, and overall system operations.
As an example, electric utilities need this information to balance the generation of electricity against consumer demand, and to operate the transmission system as efficiently as possible.
In general, electricity is generated at a generating plant, transformed for transmission over distances, and transformed again for the distribution to customers. The deregulation of the electrical utility industry will require innovative solutions to balance the generated electrical supply against the consumer demand for electricity. These solutions will require a reduction in the system costs, by increasing the system efficiencies, to match the competition levels of the deregulated industry. An increase in the electrical transmission system efficiency will require access to remotely-located consumer-usage information to enable the utilities to eliminate the excessive generation of electricity. Thus, increasing the system efficiency will require the utility to reduce excessive generation and balance the amount of generated electricity against the consumer demand.
The onset of deregulation of the electrical utility industry, and other similar industries, will result in unbundling of utility operations and segmenting of the marketplace. Deregulation will widen the gap between the supplier and consumer and increase the competition in the industry. This widened gap and increased competition results in the formation a new type of organization in the electrical utility industry called the independent sales organization (ISO). The ISO will operate as an intermediary between the electrical generating facilities and the consumers by buying generated electricity, transmitting it from the generating location to the consumer area, and reselling the electricity to the consumers.
Bulk users of electricity will generally have more negotiating power in the purchasing of electricity. To take advantage of bulk rates, local consumers may join together to form a distribution pool which has associated demand levels and other characteristics. These distribution pools of customers will compare prices for electricity and purchase electricity from the lowest cost supplier or ISO. Because of varying electricity prices, the electricity bought and sold by an ISO for use in a particular distribution pool of customers, such as Tulsa, Okla., may actually be generated in remote locations, such as Colorado on one day and in Florida on the next. Thus, potential problems will arise in balancing the generation, transmission, and usage of the nation's electrical transmission system. To avoid these problems, the ISO will need increased access to information in order to predict customer demand, purchase electricity, and resell the electricity to the consumer.
The present invention is additionally capable of providing a number of services to energy users such as energy usage analysis, energy management services, Internet inquiry services, and billing services.
2. Prior Art
Systems and methods for monitoring various types of meters, and collecting information to a centralized location are widely described in the prior art. Examples of these systems can be seen in the following patents:
U.S. Pat. No. 4,940,976, issued to Gastouniotis et al. on Jul. 10, 1990 describing an AUTOMATED REMOTE WATER METER READOUT SYSTEM; U.S. Pat. No. 5,053,766, issued to Ruiz-del-Portal et al. on Oct. 1, 1991 describing a TELEMETERING SYSTEM FOR ELECTRICAL POWER CONSUMED BY VARIOUS USERS; U.S. Pat. No. 5,451,938, issued to Brennan, Jr. on Sep. 19, 1995 describing a RF METER READING SYSTEM; U.S. Pat. No. 5,475,867, issued to Blum on Dec. 12, 1995 describing a DISTRIBUTED SUPERVISORY CONTROL AND DATA ACQUISITION SYSTEM; and U.S. Pat. No. 5,673,252, issued to Johnson et al. on Sep. 30, 1997 describing a COMMUNICATIONS PROTOCOL FOR REMOTE DATA GENERATING STATIONS. A brief discussion of these various examples is outlined in the following discussion.
U.S. Pat. No. 4,940,976, issued to Gastouniotis et al. on Jul. 10, 1990 describes an AUTOMATED REMOTE WATER METER READOUT SYSTEM. This system creates a periodic electrical signal whose frequency is proportional to the flow rate. This signal is stored into a solid state counter from which this information is transmitted to a remote receiver by a standard radio frequency telemetry link. The receiver stores the information for multiple meters and periodically sends the data to the data processing office by means of a telephone line, CATV cable, or RF link. The transmitting link between the solid state counter and the remote receiver occurs every time the flow counter is incremented as well as periodically whenever a timer generates a pulse.
The Gastouniotis et al. '976 patent uses sensing and transmitting units which both randomly and periodically sends one burst of consumption data at times throughout the day to the receiving interface unit for the area. This data is then accumulated in memory which is disgorged to the central billing site either periodically or on demand. This system teaches away from the use of multiple transmission to assure successful information transmittal. This system does not disclose any method for signal verification of the transmission from the sensing and transmitting unit. In addition, this system teaches an inefficient method of double counting the usage information and then dividing it before transmitting.
U.S. Pat. No. 5,053,766, issued to Ruiz-del-Portal et al. on Oct. 1, 1991 describes a TELEMETERING SYSTEM FOR ELECTRICAL POWER CONSUMED BY VARIOUS USERS. This system monitors consumer power usage from meters with disk revolution indicators of power consumption by utilizing a pulse generator, light generating LEDs, light and dark regions on the revolving disk, and sensors which monitor the passage of the light and dark regions of the revolving disk. The system detects and monitors disk revolutions and uses a sending means for transmitting a consumption signal to a meter concentrator, and a means for communicating the information acquired into a central computer.
U.S. Pat. No. 5,451,938, issued to Brennan, Jr. on Sep. 19, 1995 describes a RF METER READING SYSTEM. Brennan '938 collects data from the meter and stores the data for transmission. At preselected pseudorandom timing intervals, the transmitter encodes the data, creates a synch signal, start signal, message signal, and a verification signal. The RF transmitter sends the information signals to the RF receiver which identifies the start signal, receives the transmission, and verifies the accuracy of the transmission.
U.S. Pat. No. 5,475,867, issued to Blum. on Dec. 12, 1995 describes a DISTRIB

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wide area remote telemetry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wide area remote telemetry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide area remote telemetry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2816681

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.