Presses – Binding – Binder applying
Reexamination Certificate
2001-07-31
2003-10-28
Ostrager, Allen (Department: 3725)
Presses
Binding
Binder applying
C100S003000, C053S589000
Reexamination Certificate
active
06637324
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a wide aperture wire guide track for guiding baling wire around a bale of bulk fibrous material and a wire binding machine for baling bulk fibrous material that uses four sections of the wide aperture track.
2. Related Art
Wire baling of bulk materials has benefited from increased speed and reduced material cost through automation. Bulk materials include fibrous bulk materials such as cotton and nylon. Fibrous materials are commonly formed into bales by simultaneous compression and binding. There is a continuing need in the automated baling art to improve the efficiency, reliability and accuracy of the bale binding process.
Baling wire performance requirements vary depending upon the bulk material being baled. Such requirements range from industry standard specifications to general operational parameters, such as minimum speeds required for profitability. The Cotton Council issues baling constraint standards specifying particular ranges for the length of wire around the bale and the tension that the wire must withstand. These ranges correspond to the weight, volume and compression of various standard bale sizes such as “universal density” or “standard density” bales.
Current automated baling machines use an articulated track to guide wire around bales of bulk material, such as cotton, while the bale is under compression. Part of the wire guide track in current automated balers must be removable to a second position after the ends of the baling wire have been tied together, in order to allow ejection of the bale and insertion into the baling station of the next volume of material to be baled. Material to be baled is typically introduced into the automatic baler under vertical compression. Typical pressures for an industry standard 500 pound, 20×54 inch bale of cotton are in excess of 300 tons. Horizontal plates called follower blocks apply compression through platens which contact the surface of the cotton or other material being compressed. The platens incorporate slots which run lateral to the longitudinal axis of the bale. The Industry Standard number of binding wires for the most common kind of cotton bale, the standard density bale, is six. Accordingly there are six slots in the platens to allow the baling wire to be wrapped around the bale while it is still under compression. Under the lateral slots are lateral channels for insertion of wire guide track sections in both the upper and lower platens in automatic balers.
Typical bulk material compression devices incorporate a necessary movement of at least one platen into and back out of the compressed position. Prior art automatic baling machines have incorporated a two position moveable portion of the wire guide track, with a fixed section and a moveable section that opens for insertion of material to be baled and closes back around that material for baling operation. Such devices include U.S. Pat. No. 2,632,381 to Buckland, U.S. Pat. No. 3,470,813 to Nomm et al., and U.S. Pat. No. 5,031,523 to Poloni. Other prior art machines for binding bales of compressed material with wide flat straps of metal or plastic have incorporated two sections, including a fixed and moveable section, working in cooperation with the channels or slots built into the compression platens, see, U.S. Pat. No. 3,834,297 to Huson and U.S. Pat. No. 5,826,499 to Bullington. These apparatuses have not inserted any third or fourth guide track sections into the platen channels. Rather, because baling with straps has been practiced with a lower degree of precision with regard to guiding the strapping in its circuit around the bale, these prior art apparatuses have found it sufficient to use the platen channels alone for guiding the progress of the strapping.
The present invention is designed primarily for wire, baling. It uses a third and fourth guide track section to be inserted within the channels of the platens. It thereby improves efficiency, reduces repair, maintenance and material costs and generally improves guiding precision. The present applicants have previously designed and applied for a patent on a three section guide track apparatus (see application Ser. No. 09/540,020) which includes a section of the wire guide track that must be inserted under the lateral slots of the moveable platen after the moveable platen has reached the compressed position.
It is important to efficient operation of automated balers to maintain wire guide track alignment through multiple cycles of baling. The moveable portion of the wire guide track must align well with the fixed portion of the wire guide track. If the fixed and moveable portions of the wire guide track do not align well, the wire will not follow the track and will not be properly positioned around the bale. This requires a halt in baling in order to repair and/or realign the wire guide track.
There are multiple causes for misalignment. Control system failure, hydraulic or pneumatic valve failure, hydraulic or pneumatic leaks in either the automatic baler or the compression mechanism can all cause misalignment. Moreover, it is not uncommon for the cotton or other bulk material to compress in a manner resulting in the horizontal surfaces of the material being non-level or non-horizontal. This causes the abutting platen to become misaligned. Furthermore, misalignment is known to be severe enough on occasion to actually cause a collision between the wire guide track and the platen at the time of insertion of the bulk material into the automatic baler. Such collisions damage the wire guide track or platen or both, and require repair.
Lost time for repairs or for realignment are consequential because baling operations such as cotton gins are subject to time constraints due to the seasonal nature of cotton harvesting and because unattended bulk cotton waiting for baling can be ruined by fermentation if not baled and distributed in a timely fashion.
Prior art automatic wire balers are designed to relatively close tolerances where the end of the fixed portion of the wire guide track meets the end of the moveable portion of the wire guide track. These close tolerances have been necessary assure proper progression of the wire as it transits from the guide channel of one section to the channel of the next section. However, the close tolerances used in prior art guide tracks have not eliminated the incidence of small misalignments causing failures of wire to properly progress through the track. Close tolerances also increase the likelihood of a collision between the different sections of the guide track, or between portions of the guide track and the platens. Therefore, close tolerances increase the likelihood that misalignment or collision between elements of the automatic baler necessitate a halt in baling procedures for realignment or repair.
Prior art wire baling machines have been designed with no tolerance between the guide track sections; that is, the sections close together into a flush, abutting configuration, as in U.S. Pat. No. 5,031,523 patent and U.S. Pat. No. 3,470,813 patent. Where a wider tolerance has been built into a wire baling machine, as in U.S. Pat. No. 4,403,542, which does not incorporate the four guide track section layout of the present invention, an added-on bell requiring separate fabrication, has been used, see, Lewis, U.S. Pat. No. 4,403,542 at Column 4, lines 29-41. Wider tolerances in metal or plastic band strapping devices, such as in U.S. Pat. No. 4,826,499 or U.S. Pat. No. 3,834,297, are acceptable because unguided strapping bands do not deviate from the desired path to the same degree or in the same manner as unguided wire. Accordingly, band strappers have been designed in two section configurations with wide tolerances and either with a wide aperture or bell, as in U.S. Pat No. 5,826,499, or without it, as in U.S. Pat. No. 3,834,297. However, add-on bells are not workable in the present invention because they require more space than is available even in the wide tolerance configuration
Heldiman, Esq. Robert C.
Husch & Eppenberger LLC
Kang, Esq. Grant D.
L & P Property Management Company
Nguyen Jimmy
LandOfFree
Wide aperture wire tracking for baling machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wide aperture wire tracking for baling machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide aperture wire tracking for baling machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156325