Whole-body optical imaging of gene expression and uses thereof

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093100, C424S093200, C424S009100, C435S320100, C435S325000

Reexamination Certificate

active

06649159

ABSTRACT:

TECHNICAL FIELD
The invention relates to the whole-body external optical imaging of gene expression. Specifically, methods for whole-body external optical imaging of gene expression and methods for evaluating a candidate protocol or drug for treating diseases or disorders using a fluorophore operatively linked to the promoter of a gene and external optical imaging are provided herein. Methods to screen for substances or genes that regulate target promoters are also provided.
BACKGROUND ART
Whole-body imaging technology has been used to monitor “tracer molecules” in the intact body. For example, Brenner et al. studied the diagnostic value of iodine-123-2-hydroxy-3-iodo-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl] benzamide (IBZM) whole-body imaging in comparison to thallium-201 scintigraphy in patients with metastatic malignant melanoma (Brenner et al.,
Eur. J. Nucl. Med.,
26(12):1567-71 (1999)). Benard et al. conducted clinical evaluation of processing techniques for attenuation correction with
137
Cs in whole-body PET imaging (Benard et al.,
J. Nucl. Med.,
40(8):1257-63 (1999)). Jerusalem et al. showed that whole-body positron emission tomography using
18
F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging (Jerusalem et al.,
Blood,
94(2):429-33 (1999)). Eustace et al. discussed practical issues, clinical applications, and future directions of whole-body MR imaging (Eustace et al.,
Magn. Reson. Imaging Clin.
(
N. Am
), 7(2):209-36 (1999)). Engelson et al. studied fat distribution in HIV-infected patients reporting truncal enlargement quantified by whole-body magnetic resonance imaging (Engelson et al.,
Am. J. Clin. Nutr.,
69(6 :1162-9 (1999)). Valk et al. used whole-body positron emission tomography (PET) imaging with [
18
F]fluorodeoxyglucose in management of recurrent colorectal cancer (Valk et al., Arch. Surg., 134(5):503-11 (1999)). Saunders et al. evaluated fluorine-18-fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer (Saunders et al.,
Ann. Thorac. Surg.,
67(3):790-7 (1999)).
U.S. Pat. No. 5,650,135 discloses a noninvasive method for detecting the localization of an entity under study from within a mammalian subject, which method comprises: (a) administering to the subject a conjugate of the entity and a light-generating moiety or a transformed cell expressing the light-generating moiety; (b) after a period of time in which the conjugate or transformed cell can achieve localization in the subject, immobilizing the subject within the detection field of a photodetector device; (c) maintaining the subject in an immobilized condition, (d) during said maintaining, measuring photon emission from the light-generating moiety, localized in the subject, with the photodetector device until an image of photon emission can be constructed; and (e) detecting said image through an opaque tissue of said mammal. U.S. Pat. No. 5,650,135 also discloses a noninvasive method for detecting the level of an entity under study in a mammalian subject over time, which method comprises: (a) administering to the subject a conjugate of the entity and a light-generating moiety or a transformed cell expressing the light-generating moiety; (b) placing the subject within the detection field of a photodetector device; (c) maintaining the subject in the detection field of the device; (d) during said maintaining, measuring photon emission from the light-generating moiety, in the subject, with the photodetector device; and (e) repeating steps (b) through (d) at selected intervals, wherein said repeating is effective to detect changes in the level of the entity in the subject over time.
Recently, Yang et al. conducted whole-body optical imaging of green fluorescent protein-expressing tumors and metastases (Yang et al.,
Proc. Natl. Acad. Sci.
(
USA
), 97(3): 1206-11 (2000)). Yang et al. have imaged, in real time, fluorescent tumors growing and metastasizing in live mice. The whole-body optical imaging system is external and noninvasive. It affords unprecedented continuous visual monitoring of malignant growth and spread within intact animals. Yang et al. have established new human and rodent tumors that stably express very high levels of the Aequorea victoria green fluorescent protein (GFP) and transplanted these to appropriate animals. B16F0-GFP mouse melanoma cells were injected into the tail vein or portal vein of 6-week-old C57BL/6 and nude mice. Whole-body optical images showed metastatic lesions in the brain, liver, and bone of B 16F0-GFP that were used for real time, quantitative measurement of tumor growth in each of these organs. The AC3488-GFP human colon cancer was surgically implanted orthotopically into nude mice. Whole-body optical images showed, in real time, growth of the primary colon tumor and its metastatic lesions in the liver and skeleton. Imaging was with either a trans-illuminated epifluorescence microscope or a fluorescence light box and thermoelectrically cooled color charge-coupled device camera. The depth to which metastasis and micrometastasis could be imaged depended on their size. A 60-micrometer diameter tumor was detectable at a depth of 0.5 mm whereas a 1, 800-micrometer tumor could be visualized at 2.2-mm depth. The simple, noninvasive, and highly selective imaging of growing tumors, made possible by strong GFP fluorescence, enables the detailed imaging of tumor growth and metastasis formation. This should facilitate studies of modulators of cancer growth including inhibition by potential chemotherapeutic agents.
Methods for monitoring gene expression are known in the art (see generally, Ausubel et al. (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc.). However, whole-body external optical imaging of gene expression, which offers simple, noninvasive, highly selective, and real-time recording and analysis of gene expression in an intact multi-cellular organisms, e.g., animals, is not available currently. The present invention addresses this and other related needs in the art.
DISCLOSURE OF THE INVENTION
The invention provides for whole-body external optical imaging of gene expression and methods for evaluating a candidate protocol or drug for treating diseases or disorders. The method uses a fluorophore operatively linked to the promoter of a gene and external optical imaging. Methods to screen for substances or genes that regulate target promoters are also provided.
In a specific embodiment, a method to monitor the expression of a gene is provided, which method comprises: a) delivering to a multi-cellular organism a nucleic acid encoding a fluorophore operatively linked to the promoter of a gene whose expression is to be analyzed or delivering a cell containing said nucleic acid; and b) observing the presence, absence or intensity of the fluorescence generated by said fluorophore at various locations in said organism by whole-body external fluorescent optical imaging, whereby the expression of said gene is monitored.
In a preferred embodiment, a nucleic acid encoding a fluorophore operatively linked to the promoter of the gene is delivered directly to the organism. Also preferably, the nucleic acid encoding a fluorophore operatively linked to the promoter of the gene is in a viral vector such as a viral vector derived from adenovirus or a lentivirus.
In another preferred embodiment, a cell containing a nucleic acid encoding a fluorophore operatively linked to the promoter of the gene is delivered to the organism. More preferably, the cell is delivered to the organism via a surgical procedure such as direct implantation by surgical orthotopic implantation (SOI) at a desired site.
In still another preferred embodiment, the fluorophore operatively linked to the promoter of a gene is a humanized fluorophore. Also preferably, the fluorophore is a green fluorescent protein (GFP), a blue fluorescent protein (BFP) or a red fluorescent prot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Whole-body optical imaging of gene expression and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Whole-body optical imaging of gene expression and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Whole-body optical imaging of gene expression and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.