Wheat variety 25R78

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S278000, C800S279000, C800S281000, C800S284000, C800S300000, C800S302000, C800S303000, C800S288000, C800S260000, C435S421000, C435S430000, C435S430100

Reexamination Certificate

active

06825404

ABSTRACT:

FIELD OF INVENTION
This invention is in the field of wheat (
Triticum aestivum
L.) breeding, specifically relating to a wheat variety designated 25R78.
BACKGROUND OF INVENTION
Wheat is grown worldwide and is the most widely adapted cereal. There are five main wheat market classes. They include the four common wheat (
Triticum aestivum
L.) classes: hard red winter, hard red spring, soft red winter, and white. The fifth class is durum (
Triticum turgidum
L.). Common wheats are used in a variety of food products such as bread, cookies, cakes, crackers, and noodles. In general the hard wheat classes are milled into flour used for breads and the soft wheat classes are milled into flour used for pastries and crackers. Wheat starch is used in the food and paper industries, as laundry starches, and in other products. Because of its use in baking, the grain quality of wheat is very important. To test the grain quality of wheat for use as flour, milling properties are analyzed. Important milling properties are relative hardness or softness, weight per bushel of wheat (test weight), siftability of the flour, break flour yield, middlings flour yield, total flour yield, flour ash content, and wheat-to-flour protein conversion. Good processing quality for flour is also important. Good quality characteristics for flour from soft wheats include low to medium-low protein content, a low water absorption, production of large-diameter test cookies and large volume cakes. Wheat glutenins and gliadins, which together confer the properties of elasticity and extensibility, play an important role in the grain quality. Changes in quality and quantity of these proteins change the end product for which the wheat can be used.
The present invention relates to a new and distinctive wheat variety, designated 25R78 which has been the result of years of careful breeding and selection as part of a wheat breeding program. There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis and definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possess the traits to meet the program goals. The goal is to combine in a single variety an improved combination of desirable traits from the parental germplasm. These important traits may include higher seed yield, resistance to diseases and insects, tolerance to drought and heat, improved grain quality, and better agronomic qualities.
Field crops are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is sib-pollinated when individuals within the same family or line are used for pollination. A plant is cross-pollinated if the pollen comes from a flower on a different plant from a different family or line. The term cross-pollination herein does not include self-pollination or sib-pollination. Wheat plants (
Triticum aestivum
L.), are recognized to be naturally self-pollinated plants which, while capable of undergoing cross-pollination, rarely do so in nature. Thus intervention for control of pollination is critical to the establishment of superior varieties.
A cross between two different homozygous lines produces a uniform population of hybrid plants that may be heterozygous for many gene loci. A cross of two heterozygous plants each that differ at a number of gene loci will produce a population of plants that differ genetically and will not be uniform. Regardless of parentage, plants that have been self-pollinated and selected for type for many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny. The term “homozygous plant” is hereby defined as a plant with homozygous genes at 95% or more of its loci. The term “inbred” as used herein refers to a homozygous plant or a collection of homozygous plants.
Choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of variety used commercially (e.g., F
1
hybrid variety, pureline variety, etc.). For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection.
The complexity of inheritance influences choice of the breeding method. In general breeding starts with the crossing of two genotypes, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all the desired characteristics, other sources can be included by making more crosses. In each successive filial generation, F
1
→F
2
; F
2
→F
3
; F
3
→F
4
; F
4
→F
5
, etc., plants are selfed to increase the homozygosity of the line. Typically in a breeding program five or more generations of selection and selfing are practiced to obtain a homozygous plant.
Pedigree breeding is commonly used for the improvement of self-pollinating crops. Two parents that possess favorable, complementary traits are crossed to produce an F
1
. An F
2
population is produced by selfing one or several F
1
's or by sib-pollinating two F
1
's. Selection of the best individuals may begin in the F
2
population; then, beginning in the F
3
, the best individuals in the best families are selected. Replicated testing of families can begin in the F
4
generation to improve the effectiveness of selection for traits with low heritability.
At an advanced stage of inbreeding (i.e., F
6
and F
7
), the best lines or mixtures of phenotypically similar lines are tested for potential release as new varieties.
Backcross breeding has been used to transfer genes for simply inherited, highly heritable traits from a donor parent into a desirable homozygous variety that is utilized as the recurrent parent. The source of the traits to be transferred is called the donor parent. After the initial cross, individuals possessing the desired trait or traits of the donor parent are selected and then repeatedly crossed (backcrossed) to the recurrent parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., variety) plus the desirable trait or traits transferred from the donor parent. This approach has been used extensively for breeding disease resistant varieties.
Each wheat breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful varieties produced per unit of input (e.g., per year, per dollar expended, etc.).
Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination and the number of hybrid offspring from each successful cross.
Mass selection and recurrent selection can be used to improve populations of either self- or cross-pollinated crops. A genetically variable population of heterozygous individuals is either identified or created by intercrossing several different parents. The best plants are selected based on individual superiority, outstanding progeny, or excellent combining ability. The selected plants are intercrossed to produce a new population in which further cycles of selection are continued.
The single-seed descent procedure in the strict sense refers to planting a segregating populati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wheat variety 25R78 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wheat variety 25R78, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wheat variety 25R78 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3362810

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.