Wet lithographic printing plates

Printing – Planographic – Lithographic plate making – and processes of making or using...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C101S454000, C101S460000, C101S465000

Reexamination Certificate

active

06196129

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of wet lithographic printing plates. More particularly, the present invention pertains to a media and fluid material set which comprises (a) a media with a support that bears a hydrophilic layer; and (b) a fluid material comprising a liquid carrier medium and a reactive component, which comprises a transition metal complex of an organic acid. The reactive component reacts after application of the fluid material to the media to form an ink-accepting layer on the surface. The present invention pertains to wet lithographic printing plates with ink-accepting layers comprising such reaction products and such plates capable of being imaged using laser-induced thermal ablation and also pertains to imaged wet lithographic printing plates with such ink-accepting layers, made by an ink-jet printing application, by laser-induced thermal ablation, or by other imaging processes, and methods of making such wet lithographic printing plates.
BACKGROUND OF THE INVENTION
Throughout this application, various publications, patents, and published patent applications are referred to by an identifying citation. The disclosures of the publications, patents, and published patent applications referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.
Lithographic printing has long been the most widely used printing technique, especially for short to medium printing run lengths of 1,000 to 15,000. The term “lithographic” is meant to include various terms used synonymously, such as offset, offset lithographic, planographic, and others. Most lithographic plates are still produced photographically. The disadvantages of this and some of the alternative lithographic plate materials and processes are described in U.S. Pat. Nos. 4,958,563 and 5,487,338.
With the advent of the computer in revolutionizing the graphics design process leading to printing, there have been extensive efforts to develop a convenient and inexpensive computer-to-plate system, particularly for use in lithographic printing. Many of the new computer-to-plate systems are large, complex, and expensive. They are designed for use by large printing companies as a means to streamline the prepress process of their printing operations and to take advantage of the rapid exchange and response to the digital information of graphics designs provided by their customers. There remains a strong need for an economical and efficient computer-to-plate system for the many smaller printers who utilize lithographic printing.
A number of electronic, non-impact printing systems have been investigated for use in making lithographic printing plates to satisfy the needs of these smaller printers. Foremost among these have been laser printing systems, for example, as described in U.S. Pat. No. 5,304,443 and references therein. These have had some limited success, but have not been able to overcome the disadvantages of undesired background toner imaging, limitation to small sizes (approximately 11 inches by 18 inches) which are too small for many applications, and limitation to only those flexible substrates such as paper and plastic films which can transport through the laser printers.
Another non-impact printing system which has received attention for economical and convenient computer-to-plate preparation for lithographic printing is thermal transfer printing, for example, as described in U.S. Pat. No. 4,958,564. This involves the printing of a hydrophobic wax or resin material onto the lithographic printing blank. This approach has similar size and flexible substrate limitations as described above for laser printing. In addition, the nature of the thermal transfer process is very demanding on intimate contact of the wax or resin donor ribbon to the receiver substrate to obtain consistent image quality. For this latter reason especially, the low cost thermal transfer printers in wide use for hard copy color output printing from computers are not used to prepare lithographic printing plates. Instead, more expensive, specially built thermal transfer printers have been proposed. The only widely used printers for hard copy computer output that have seen some use in making lithographic plates are laser printers, in spite of their aforementioned disadvantages.
In recent years, ink jet printers have replaced laser printers as the most popular hard copy output printers for computers. Some of the competitive advantages of ink jet printers have been low cost, reliability, and the ability to make color images without significantly increasing the cost of the printer. Both thermal ink jet and piezoelectric ink jet printing methods have been widely adopted for desktop computer printing. A third conventional type of ink jet printing, a continuous flow type method, has found acceptance in high quality color printing and proofing in graphics applications.
In spite of the very large and rapidly growing installed base of low cost desktop ink jet printers as well as a large number of higher cost, larger size ink jet printers used in prepress proofing and in printing output, there has not been use of these ink jet printers to make lithographic printing plates. There have been some reports in the literature proposing the use of ink jet printers to make lithographic printing plates. In Japanese Kokai 62-25081, an oleophilic liquid or fluid ink was printed by ink jet printing onto a hydrophilic aluminum surface of a lithographic printing plate. Titanate or silane coupling agents were present in the ink.
An ink jet printing apparatus to make lithographic printing plates is described in PCT WO 94/11191. It is directed to depositing hydrophobic or hydrophilic substances on hydrophobic printing plates.
In U.S. Pat. No. 5,501,150, a fluid ink and hydrophilic media set containing materials to produce a silver-reducible image by ink jet printing are used to make a metallic silver image which, following wet processing to make the silver image sufficiently hydrophobic, is said to provide a lithographic printing plate.
Ink jet printing where the ink is a solid or phase change type ink instead of a liquid or fluid type ink is described in U.S. Pat. No. 4,833,486 to deposit a hot wax on a surface of an offset plate. Upon cooling of the wax, it solidifies, thereby providing a printing plate. Solid ink jet printing has serious disadvantages for lithographic plates in that the wax or resin image has limited durability due to its thermoplastic, chemical, and adhesive properties and the amount and rounded shape of the solidified ink jet droplet on the media do not have the intrinsic image resolution properties found in liquid or fluid ink jet printing.
The use of ink jet printing to apply an opaque image or mask pattern to a photosensitive lithographic printing plate blank, is described in Japanese Kokai 63-109,052. The blank is then exposed through the ink jet imaged mask pattern and then processed by conventional means to provide a lithographic printing plate. This approach retains the materials and processing of conventional lithographic printing plates and only uses inkjet printing as an alternative in the photomask through which the conventional plates are exposed. Thus this approach adds to the complexity and expense of the platemaking process and does not depend on the ink jet ink image for the hydrophobic image of the plate. U.S. Pat. No. 5,495,803 describes a solid or phase change type of ink jet printing to form a photomask for a printing plate.
Much of the technical development in ink jet printing has been directed to color and black imaging for computer hard copy output. The need for more archival, durable, and waterfast imaged media has led to ink jet inks and receiver media that contain chemically reactive components. For example, U.S. Pat. No. 5,429,860 describes a reactive ink jet ink/media set where the receiver media has a reactive component which reacts with the ink to give a more durable image an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wet lithographic printing plates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wet lithographic printing plates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wet lithographic printing plates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2480639

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.