Wells – Processes – Cleaning or unloading well
Reexamination Certificate
1998-04-20
2001-02-20
Neuder, William (Department: 3672)
Wells
Processes
Cleaning or unloading well
C166S194000, C166S223000
Reexamination Certificate
active
06189618
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to wellbore wash nozzles; to wellbore apparatuses and systems for facilitating the flow of cuttings from a wellbore mill, drill or mill-drill; in certain aspects, to milling, drilling, or milling-drilling systems with a wash nozzle; and to methods for using such nozzles and systems.
2. Description of Related Art
In wellbore milling, drilling, and milling-drilling operations cuttings are produced which, if not efficiently removed from the area around a mill, drill, or mill-drill, will inhibit or prevent effective operation. Typically such cuttings are removed by fluid pumped from the surface down through a work string, tubing string, or coiled tubing, through various apparatuses and devices, to the location of milling, drilling, or milling-drilling. In many prior art systems fluid is pumped through ports in a nozzle, mill, drill, or mill-drill. The pumped fluid moves the cuttings away from wellbore tools and up in an annulus in the wellbore.
In various wellbore operations, it is desirable to wash the interior of a tubular string. A variety of wash nozzles are used in prior art systems to accomplish this.
There has long been a need for an efficient and effective wash nozzle for washing tubulars' interiors and/or for cuttings removal, and for wellbore systems and methods with such a nozzle.
SUMMARY OF THE PRESENT INVENTION
The present invention, in certain aspects, discloses a wash nozzle having a central mandrel with a fluid flow bore therethrough from top to bottom. Initially a piston is sealingly and releasably secured within the fluid flow bore of the central mandrel, e.g. by one or more shear pins or shear screws. The piston also has a fluid flow bore therethrough from top to bottom so that when the piston's bore is not closed off, fluid is flowable through the mandrel.
A sleeve is sealingly and rotatably secured around and exteriorly of the central mandrel. The sleeve has one or more lower wash ports therethrough aligned with cut out areas on the interior of the sleeve and exterior of the central mandrel. The mandrel's lower wash ports are in fluid communication with the cut out areas and, in certain preferred embodiments, at the same level as the lower wash ports of the sleeve.
Initially, the piston blocks fluid flow through the lower wash ports of the central mandrel and, hence, through the lower wash ports of the sleeve. Upon dropping of a closure device (e.g. a dart, plug, or ball) into the piston to seat against a seat therein, thereby closing off flow through the piston and subjecting the shear pins(s) to the force of the fluid, the shear pins(s) shear freeing the piston. The piston moves down past the mandrel's lower wash ports so that fluid under pressure flows out from the sleeve's lower wash ports. In one aspect one or more of the lower wash ports are angled so that flow therethrough initiates and maintains sleeve rotation so that a rotating flow spray or wash impinges on a tubular and/or in a wellbore exteriorly of the nozzle. In one aspect the piston is deleted and the sleeve rotates continuously.
The central mandrel, in certain preferred embodiments, has one or more upper wash ports therethrough which are in fluid communication with a cut out area defined by a cut out portion of the exterior of the central mandrel and a cut out portion of the interior of the sleeve. One or more upper wash ports through the sleeve are also in fluid communication with the cut out area so that fluid flowing through the upper wash port(s) of the central mandrel flows out through the sleeve's upper wash ports into an annulus between the nozzle's exterior and the interior of a wellbore or of another tubular in which the nozzle is located. In one aspect there are multiple levels of upper wash ports in the sleeve and mandrel, with corresponding cut-out areas. In one aspect the piston is sized so that it does not block flow through the upper wash ports.
In one aspect one or more of the sleeve's lower wash ports is disposed at an angle so that fluid flowing into this wash port or ports of the sleeve's impinges on the port wall causing the sleeve to move and rotate around the central mandrel. Thus, in those embodiments with a piston (or other selectively operable structure) as described herein and one or more angled lower ports the sleeve is selectively rotatable. Prior to activation of sleeve rotation, flow occurs in those embodiments with one or more upper ports through the upper ports. In another aspect one or a set of upper ports and one or a set of lower ports are angled in different directions so little or no sleeve rotation occurs (until flow through one set of ports is blocked), since the ports are angled, sized, disposed and configured so that forces on the port walls offset each other, preventing or severely limiting sleeve rotation.
A wash nozzle according to the present invention may be used above or below any wellbore, mill, drill, or mill-drill. Such a nozzle may be used at any location in a wellbore coil tubing string. In one system according to the present invention, a connector connects the wash nozzle to a coiled tubing string which extends through a cased bore to the surface. A downhole motor is connected to and beneath the wash nozzle, and a cutting tool, e.g. a mill, drill, or mill-drill is connected to the downhole motor. Typically the top half of the motor does not rotate so the wash nozzle does not rotate in this particular embodiment. In other embodiments the entire wash nozzle may rotate with a tubular string. Initially, fluid pumped under pressure from the surface flows through the coiled tubing string, through the wash nozzle, and to the motor so that the motor rotates the cutting tool. At any desired point during or following the cutting operation, e.g., but not limited, upon cutting completion, a ball, plug, or dart is dropped to close off fluid flow through the piston and through the central mandrel. Fluid pressure shears the shear pins; the piston moves to unblock the fluid passage through the lower wash ports; sleeve rotation commences; and fluid flowing from the lower ports (and upper ports, if present) moves and lifts cuttings away from the cutting tool and its area of operation.
In one aspect the ball, plug, or dart is entirely made of washable, dissolvable, and/or disintegratable material so that, at a desired point, flow through and past the nozzle is reestablished. In one aspect the ball, plug, or dart has one or more channels therethrough or one or more recesses on a side thereof initially filled with washable material which, in response to flow at a known pressure and/or flow of a fluid known to wash away, dissolve, or eat away the washable material, flows away again providing a flow channel through the nozzle.
In one aspect the sleeve has one or more angled ports and is shear-pinned to the mandrel so that fluid pressure through the angled port breaks the pin freeing the sleeve for rotation. In one aspect a burst disc or burst tube (see e.g. burst tube and burst devices in U.S. application Ser. No. 08/992,620 filed Dec. 17, 1997 entitled “Wellbore Shoe Joints and Cementing Systems” co-owned with the present invention and incorporated fully herein for all purposes) initially blocks flow through the one or more angled ports. Also, a dart or plug with such a burst apparatus may be used so that flow through a nozzle is re-established.
In one aspect a nozzle according to the present invention has no piston as described above, but has at least one angled sleeve port in fluid communication with a mandrel port (and in one aspect a common fluid communicating cut-out area). A seat around a bore of the mandrel is positioned sufficiently below the at least one angled port that a closure device dropped into the nozzle seats against the seat, closing off flow through the nozzle, so that flow increases through the at least one angled port sufficiently to initiate sleeve rotation (or to increase sleeve rotation if fluid pressure prior to c
Beeman Robert S.
Breaux Stephen P.
Lee Mark
McClung, III Guy L.
McClung Guy
Neuder William
Weatherford / Lamb, Inc.
LandOfFree
Wellbore wash nozzle system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wellbore wash nozzle system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wellbore wash nozzle system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2613602