Electricity: measuring and testing – Of geophysical surface or subsurface in situ – With radiant energy or nonconductive-type transmitter
Reexamination Certificate
2000-09-15
2004-03-09
Patidar, Jay (Department: 2862)
Electricity: measuring and testing
Of geophysical surface or subsurface in situ
With radiant energy or nonconductive-type transmitter
C324S335000
Reexamination Certificate
active
06703837
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention generally pertains to well logging, and more specifically to well logging apparatus and methods for rapidly developing data for determining such formation properties as resistivity. The apparatus and methods have general applications, but are particularly well suited for measuring while drilling applications employing advanced, high speed drilling apparatus.
2. Background of the Art
Resistivity is well known parameter used in evaluating earth formations surrounding a well borehole. In the oil and gas exploration and production industry, a measure of resistivity is used to delineate hydrocarbons from saline water within pore space of earth formation penetrated by the borehole. The basic principal underlying the measurement is that for a given formation matrix, the formation containing more resistive hydrocarbon fluid within the pore space will exhibit a greater composite resistivity than the same formation containing less resistive saline liquid within the pore space.
In the evolution of the art, resistivity instruments or “tools” were originally conveyed along the wellbore by means of a wireline cable. This technique is still widely used today. Resistivity related measurements are transmitted to the surface by means of the wireline for processing, interpretation and recording. This technique is applicable only in well boreholes that have been previously drilled.
In the petroleum industry, it is economically and operationally desirable to evaluate earth formations as they are being penetrated by a drill bit, rather than waiting until the entire well has been drilled as is required in conventional wireline logging. Apparatus and methods for evaluating formations while drilling became commercially available during the 1970s. This technology, known as measurement-while-drilling (MWD) or, alternately, logging-while-drilling (LWD), now includes a wide range of formation evaluation instrumentation which is typically mounted within a drill collar or a drill string, and conveyed along the borehole by the drill string during the drilling operation. Resistivity systems are included in the suite of available MWD systems. In addition to providing timely formation resistivity measurements while the well is being drilled, MWD resistivity measurements can be more accurate than their wireline counterparts. Well boreholes are typically drilled using drilling fluids at a pressure exceeding formation pressure. Over time, drilling fluid “invades” the formation in the vicinity of the borehole thereby perturbing composite resistivity measurements made with a tool within the borehole. Invasion is minimal at the time of drilling and typically increases over time after completion of the drilling operation. MWD resistivity measurements made during the actual drilling operation are, therefore, less perturbed by invasion than wireline resistivity measurements made after the well has been drilled. Invasion, and compensation for the effects of invasion, will be discussed in more detail hereafter.
Resistivity measurement tools typically include one or more transmitter coils and one or more receiver coils. Furthermore, more than one transmission frequency is typically used. Generally speaking, multiple transmitter and receiver coils, and multiple transmission frequencies are used to obtain composite resistivity measurements from differing radial depths into the formation in order to compensate for previously-mentioned drilling fluid invasion effects, to measure a wider range of resistivities, to resolve dipping formation beds, to measure formation anisotropy variables, and to measure distance to adjacent beds in geosteering drilling operations. Propagation type resistivity systems, which measure both phase shift and attenuation of transmitted signals, are widely used in prior art MWD systems. At present, this type of system is not used for wireline measurements, but their relative low cost, small physical size and high accuracy forms an attractive addition to the wireline logging arsenal of tools.
U.S. Pat. No. 5,581,024 to Meyer, Deady and Wisler discloses a depth correction and computation apparatus and methods for combining multiple borehole resistivity measurements. U.S. Pat. No. 5,594,343 to Clark, Wu, and Grijalva discloses resistivity well logging apparatus and methods with borehole compensation including multiple transmitters asymmetrically disposed about a pair of receiving antennas. U.S. Pat. No. 5,672,971 to Meador, Meisner, Hall, Thompson and Murphy discloses a resistivity well logging system arranged for stable, high sensitivity reception of propagating electromagnetic waves. U.S. Pat. No. 5,682,099 to Thompson, Wisler, and Schneider discloses a method for bandpass sampling in MWD systems, which is applicable to multiple frequency resistivity systems. This patent is intended to be incorporated herein by reference for disclosure such as the use of transmitters and receivers to garner information on the resistivity of the formation in the region of a wellbore. U.S. Pat. No. 5,892,361 to Meyer, Thompson, Wisler, and Wu discloses the use of raw amplitude and phase in propagation resistivity measurements to measure borehole environment. U.S. Pat. No. 5,329,235 to Zhou, Hilliker and Norwood discloses a method for processing signals from a MWD resistivity logging tool to enhance vertical resolution. There are other disclosures in the art, which discuss various configurations, frequencies, and processing methods of resistivity logging tools.
In prior art systems employing multiple transmission frequencies, measurements are made sequentially using one transmitter and one frequency at a time. Because of the relatively slow drilling penetration rates of earlier MWD measurement systems, the time consuming sequential multiple frequency transmission has not presented a significant vertical depth resolution problem. The industry is, however, evolving toward more and faster MWD measurements, especially when the measurements are made when the drill stem is being removed or “tripped” from the borehole for purposes of changing a drill bit or for some other purpose. Sequential frequency transmission systems are detrimental to these faster methods. In addition, since wireline logging tools are conveyed along the borehole at a much faster rate than their MWD counterparts, sequential rather than simultaneous multiple frequency transmission is even more detrimental. No known prior art discloses a MWD resistivity logging system, which used multiple transmitter and receivers and multiple transmission frequencies that are transmitted simultaneously rather than sequentially.
SUMMARY OF THE INVENTION
In view of the prior art systems discussed above, an object of the present invention is to provide a propagation resistivity MWD logging system which employs at least two transmission frequencies transmitted simultaneously.
Another object of the present invention is to provide a MWD propagation resistivity logging system which utilizes at least two transmitters to transmit at least two different frequencies simultaneously.
Yet another object of the invention is to provide a MWD propagation resistivity logging system in which a single transmitter transmits at two different frequencies at the same time.
Still another object of the present invention is to provide a MWD propagation resistivity logging system employing at least two transmitters and two receivers which measure signals that are subsequently combined to yield phase difference and attenuation factor measurements that are compensated for adverse effect of systematic transmitter and receiver error.
Still another object of the invention is to provide a propagation resistivity measurement system that meets the above mentioned objects and that can be configured as a tool for wireline logging operations.
There are other objects and applications of the present invention that will become apparent in the following disclosure.
The present invention is a propagation resistivity system that utilizes one or more transm
Thompson Larry W.
Wisler MacMillan M.
Oathout Mark A.
Patidar Jay
Precision Drilling Technology Services Group Inc.
LandOfFree
Wellbore resistivity tool with simultaneous multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wellbore resistivity tool with simultaneous multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wellbore resistivity tool with simultaneous multiple... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3233383