Welding wire feed mechanism

Advancing material of indeterminate length – By orbitally traveling material-engaging surface – With control or adjustment means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S137700, C226S090000, C226S187000

Reexamination Certificate

active

06568578

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a feeding mechanism for feeding filler wire to a welding torch or gun, and more particularly to an improved device for adjusting an engagement pressure within the feeding mechanism.
2. Description of the Related Art
Materials can be joined together by welding or brazing them together with a filler material, such as, for example, steel or aluminum wire (i.e., “filler wire”). This typically involves the use of a welding machine (e.g., an arc welding gun or torch) to melt the filler wire at the junction of the two materials that are to be joined. To produce a strong and reliable weld, it is important that the filler wire be supplied smoothly and continuously to the welding gun. Typically, the filler wire is provided to the welding gun through a conduit, which is connected to a remote wire-feeding unit. Within the wire-feeding unit, the filler material is typically coiled about a reel, which is rotatably mounted within the unit.
There are several systems for delivering the filler wire in the wire-feeding unit to the welding gun. For example, in a pull-type feed system, the welding gun includes a feeding mechanism that pulls the wire from the wire-feeding unit. In a push-type feed system, the wire-feeding unit includes a feeding mechanism, which pulls the wire from the reel and then pushes the wire through the conduit towards welding gun. A push-pull type feed system utilizes a feeding mechanism in both the welding gun and the wire-feeding unit.
The push-pull type feed systems are generally preferred because of their superior performance. As mentioned above, these system typically include a feeding mechanism in both the welding gun and the wire-feeding unit. These feeding mechanisms typically include a motor, an idler roll and a drive roll, which is driven by the motor. The filler wire passes through the space between the driver roll and the idler roll. Preferably, the idler roll is provided with an adjustment mechanism for adjusting the engagement pressure between the idler roll and the drive roll.
The motor in the wire-feed cabinet is typically referred to as a “slave motor”, while the motor in the welding torch is typically referred to as a “gun motor”. Typically, the slave motor is a torque motor or a torque-type motor, which runs at a higher speed, but lower torque than the gun motor. The gun motor is typically a DC motor, which runs at a lower speed than the slave motor, but operates at a higher torque. As such, the feeding mechanism in the wire-feed cabinet is always trying to provide filler wire at a faster rate than the feeding mechanism in the welding gun. However, because the wire feeding mechanism in the welding gun is controlling the rate of wire feed, the column strength of the filler wire in the conduit controls the slave motor. Thus, the two wire feeding mechanisms operate at the same speed, which reduces the tendency of the filler wire to bind and/or compress within the conduit.
In order for the push-pull system to work properly, it is important that the engagement pressure between the idler roll and the driver roll in the wire-feed unit be adjusted properly. As mentioned above, the idler roll can be provided with an adjustment mechanism for adjusting the engagement pressure. An example of such an adjustment mechanism can be found in U.S. Pat. No. 6,064,036. The disclosed idler roll is secured to a pivot arm. A bolt and spring hold the arm in place during the welding process and bias the idler roll against the drive roll. The engagement pressure can be adjusted by tightening the bolt and changing the distance between the bolt and the pivot arm. In this manner, the engagement pressure can be adjusted by compressing or decompressing the spring.
This method of adjusting the engagement pressure has several disadvantages. For example, to find the proper position of the bolt, the operator typically routes the filler wire between the driver roll and the idler roll in the wire-feed unit. The operator then must prevent the wire spool from turning with the palm of one hand while at the same time grasping the bolt. With his other hand, the operator must actuate a trigger on the welding gun to operate the feed mechanism. The operator slowly tightens the bolt and increases the engagement pressure until the slave motor stalls. At this condition, the engagement pressure is proper and the wire does not slip even if a small amount of pressure is added to the wire as it exists the welding gun. If the engagement pressure is too small, the drive roll slips on the filler wire. If the engagement pressure is to large, the idler roll can cut into the wire causing excessive wire residue buildup. Too much engagement pressure also tends to flatten and deform the shape of the wire.
The method described above for adjusting the engagement pressure is time consuming, involves a relatively high level of dexterity and is subject to human error. Moreover, when the type of filler wire or wire sized is changed (e.g., from aluminum to steel), the engagement pressure must be readjusted. The engagement pressure must be readjusted because steel wires typically result in a higher column strength, as compared to aluminum wires) in the conduit. Moreover, steel wires tend to be harder than aluminum wires. As such, the engagement force should be larger for steel wires as compared to aluminum wires.
SUMMARY OF THE INVENTION
Accordingly, one aspect of the present invention involves a welding filler wire feed apparatus for feeding filler wire to a welding gun. The apparatus comprises a main frame and a secondary frame configured to move relative to said main frame. A first wheel is supported by the main frame and defines a first surface for contacting a first side of a filler wire. A second wheel is supported by the second frame and defines a second surface for contacting a second side of the filler wire. The second surface generally opposes the first surface. A motor is connected to at least one of the first wheel and the second wheel so as to selectably drive the at least one of said first wheel and said second wheel. A bias controller that includes a first resilient portion that biases the secondary frame such that the second surface is biased towards the first surface. The bias controller having a first preset position and a second preset position. In the first preset position, the first resilient portion exerts a first force on the secondary frame and in the second preset position, the first resilient portion exerts a second force on said secondary frame. The first force is greater than said second force.
Another aspect of the of the present invention involves a welding filler wire feed apparatus for feeding filler wire to a welding gun. The apparatus comprises a source of filler wire, a drive wheel, a motor, and a idler wheel. The drive wheel defines a first surface for contacting a first side of the filler wire. The motor is connected to the drive wheel so as to selectably drive the drive wheel. The idler wheel defines a second surface that is generally opposed to the first surface and contacts a second side of the filler wire. A portion of the filler wire is located between the first surface and the second surface. A bias device includes a first resilient portion positioned along a shaft. The resilient portion is configured to bias the idler wheel towards the driver wheel. The bias device further includes means for occupying a first distance on the shaft in the biasing direction so as to force the resilient portion to assume a first preset length and occupying a second distance on the shaft in the biasing direction so as to force the resilient portion to assume a second length.
Yet another aspect of the present invention involves a welding filler wire apparatus comprising a frame, a first drive section, a second drive section, a motor, a bias member and an actuator. The first drive section is mounted on the frame and defines a first drive surface for contacting a first side of the filler wire. The second drive is move

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Welding wire feed mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Welding wire feed mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Welding wire feed mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077725

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.