Weighted round robin engine used in scheduling the...

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06434155

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for scheduling the emission of asynchronous transfer mode (ATM) cells from an ATM cell queuing device. More particularly, the present invention relates to a system for controlling the emission of ATM cells while maintaining a desired quality of service (QoS) for different signal traffic provided to a telephone service subscriber.
2. Background
The following description is intended to provide a context for a description of the invention, and is not intended to constitute an admission of prior art.
I. ATM Cells
The telecommunications industry has developed schemes for transmitting telephone signals in digital formats. In one format, termed time division multiplexing (TDM), plain old telephone (POTs) voice signals are provided in a digital format for transmission. In another format, the ATM format, broadband digital signals which are provided from computers or fax machines are configured for transmission. Separate transmission paths are typically provided for the ATM and TDM signals. In the future it is desirable to provide all signals in an ATM format to avoid the need for separate transmission paths and separate transmission equipment.
An ATM signal from a telephone service subscriber is divided into cells or packets, and cells from multiple sources and multiple destinations are asynchronously multiplexed together during transmission. ATM cells are multiplexed when transmitted from node to node in a network. In each node a network switch or queuing device selects both the order of transmission for cells and the next node to where the cell is retransmitted. It is desirable that network switches be capable of supporting network traffic of various characteristics including both Constant Bit Rate (CBR) traffic, with a fixed time guarantee for delivery, and Unassigned Bit Rate (UBR) traffic.
CBR traffic is needed to assure that POTs voice signals are transmitted without delays so that voice signals are not interrupted, and so that no delay is apparent to listeners receiving the signals. UBR traffic can experience delays, and is typically delivered in time frames based on an assigned Quality of Service (QoS). The QoS, for instance, can be based upon a rate a subscriber pays.
The structure of a typical ATM cell is depicted in FIG.
1
. Each ATM cell is typically 53 bytes long, with 5 bytes reserved for a packet header to identify routing and other information for the cell payload data being transferred, and 48 bytes reserved for storing the ATM payload data. The generic flow control (GFC) of the header is used for identifying a user network interface (UNI) and can include bits for cell flow control. The Virtual Path Identifier (VPI) and Virtual Circuit Identifier (VCI) fields identify every circuit or node along a path which the cell is to be transferred. The Payload Type (PT) identifies the payload data as user data, OAM data, or resource management data. The Cell Loss Priority (CLP) indicates a priority for the cell used in scheduling transmission of the cell through a network. Header Error Check (HEC) bits are included for use in determining if transmission errors have occurred when the ATM cell is transferred. The Payload Bytes store the ATM cell data.
The header information of the ATM cell identifies a routing connection for the cell between two stations, also referred to as a Virtual Circuit (VC). To establish the VC, a first end station requests a connection to a second end station by submitting a connection request to a User to Network Interface (UNI) with the network. After the VC is established, the end stations exchange ATM cells with header information identifying the VC routing.
II. Quality of Service (QoS) Control
With ATM cells arriving at a node faster than the ATM switch can transmit other ATM cells out, the ATM switch must schedule the transmission of each cell. The cells are in general buffered at each switch in queues to accommodate congestion. Assuming no congestion, cells which are received from an incoming link at a switch are immediately transmitted over an outgoing link to another destination. When congestion occurs, cells are typically assigned a priority and stored in a first in first out (FIFO) queue by the priority. The queued cells are then transmitted in an order dictated by priority.
A desirable function of a switch or queuing device in an ATM network is to support the QoS for each VC to which the station is connected. The QoS identifies peak and average data rates for a service a user is assigned. To assure a constant bit rate is met for CBR traffic, the CBR traffic can be assigned to the highest QoS, while a user with an Unassigned Bit Rate (UBR) will have a rate controlled to be less than a peak value depending on its QoS parameter. The QoS parameters include Peak Cell Rate (PCR), Cell Delay Variation (CDV) Tolerance, and Sustainable Cell Rate (SCR). The PCR defines an upper bound on the cell rate of a VC connection. The SCR is an upper bound on the average cell transmission rate over the connection. For Constant Bit Rate (CBR) connections, usually attributed to premium rate services, no SCR is defined. The CDV tolerance parameter indicates the degree of distortion allowed in the interarrival time of cells on a requested connection.
An end node as well as an intermediate node for a VC may police traffic to ensure that a VC does not exceed the PCR or SCR for the QoS assigned to an ATM cell. If a node detects transmission rates in excess of the QoS for a VC, it can typically police traffic by discarding an ATM cell.
III. Network Channel Bank Structure
FIG. 2
shows components of an access network channel bank
10
used to distribute ATM signals to and from subscribers. The channel bank shown includes subscriber slots
12
for attachment of subscriber line cards
14
. The line cards
14
provide signals to and from subscribers and can function to generate ATM signals from POT connections, such as from line
16
, and further create ATM cells from signals generated from components such as personal computers on lines, such as line
18
. Signals are provided on an interface bus
20
on a backplane to and from the line cards
14
. The cell bus
20
is further connected to a channel bank control unit
22
.
The channel bank structure also includes a transport slot
24
for connection of a transport card
26
. The transport slot
24
is connected by a interface cell bus
29
to the bank control unit. The transport card
26
includes a cell bus interface buffer
28
for connecting to the cell bus
28
, a multiplexer/demultiplexer
30
for connecting the cell bus interface buffer
28
to a buffer
32
, and the buffer
32
further connects to multiple lines which are provided to an internet service provider (ISP).
The multiplexer/demultiplexer may be controlled by an ATM LAyer Solution (ATLAS)
34
. Such an ATLAS chip is manufactured by PMC Sierra, Inc. The ATLAS
34
provides ATM header lookup to determine cell routing and also functions to police ATM traffic QoS parameters for a VC using a double leaky bucket method. The double leaky bucket system determines whether a VC assigned to the ATM cell exceeded the QoS parameters for the cell. To perform policing for the QoS parameters, the ATLAS
34
either drops the ATM cell or provides a note or tag with the cell header identifying the violation. ATLAS hardware to enable such policing is significant and includes counters, timers and control logic for each potential VC connection to a network station.
The channel bank control unit
22
includes components for routing ATM cells between the subscriber line cards and the transport card
24
. The channel bank control unit
22
includes components such as Field Programmable Gate Arrays (FPGAs) along with buffer memories used for routing ATM cells.
It is desirable to provide circuitry in a channel bank control unit to control the transmission of ATM cells according to their QoS parameters so that QoS parameters are not exceeded and ATM cells are not dropped by a policing functi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Weighted round robin engine used in scheduling the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Weighted round robin engine used in scheduling the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weighted round robin engine used in scheduling the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.