Web winding device and method

Winding – tensioning – or guiding – Convolute winding of material – With particular drive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C242S542400, C242S542000, C242S541600, C226S095000, C226S097100, C226S097300

Reexamination Certificate

active

06250581

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a web winding device and method, and more particularly, to a web winding device and method for winding a material web into a winding roll, with a winding bed that is defined by at least one driven first support roller and a second support roller.
2. Discussion of Background Information
In one of the last manufacturing steps before paper leaves the paper factory, the paper web must be rolled into a winding roll so that it can be transported and above all, can be handled by a user.
A simple winding device of this type is the so-called support roller winder. Here, the winding roll rests on two (or more) support rollers. When one support roller is driveably rotated, the support roller simultaneously drives the winding roll along the circumference of the winding roll. Through rotation of the winding roll, the material web is drawn onto the winding roll. Although the diameter of the winding roll is increased in this process, this increase is not problematic since the center or the roll core of the winding roll can be moved from the support rollers.
A web winding device of the type mentioned above is known from DE 87 17 259 U1. With a winding device of this type, there exists the risk that air will get trapped between the layers of the winding roll. To prevent this, in one embodiment, the surfaces of the first support roller are provided with an elastic cover. In another embodiment, the winding device is embodied not as a double web winder, but as a support drum roller. In this embodiment, the jacket of the carrying drum can have a perforation through which air between the incoming web and the carrying drum can be removed to prevent the web from lifting away from the drum.
Another web winding device is disclosed in EP 0 791 550 A2. In this device, one of the two support rollers is provided with a vacuum box, which is effective on a portion of the circumference of this support roller that is outside the winding bed. If the roll is changed, the beginning of the incoming material web must be secured and the vacuum must be switched on. The material web can then be transported to the winding bed with the aid of the vacuum. During winding, the vacuum is switched off and pressure is built up in the winding bed. This pressure urges the roll upward, thereby reducing the load of the roll on the support rollers.
In a winding roll, the proper progression of winding tightness is of great significance. Normally, a greater winding tightness is needed on the inside of the winding roll than in the outer layers. The winding tightness is influenced by a number of factors. One factor is the load pressure with which the winding roll rests on the support rollers. This rises as the roll diameter increases and thereby increases the winding tightness. Another factor is the tension with which the incoming material web is pulled onto the winding roll. The tension is influenced by the stations preceding the winding device, for example by a cutting device or other devices that can have a braking effect.
Winding tightness may be influenced by driving both support rollers or by means of different circumference speeds or drive moments. The tension in winding the individual layers onto the winding roll may be adjusted. Another method of influencing the winding tightness is by controlled the line load in the nip or roll gap between a support roller and the winding roll. With increasing roll diameter, the weight of the roll clearly increases and with it, the line load, i.e., the pressure with regard to the axial length. If precautions are not taken, this would lead to an increase in the winding tightness from the inside to the outside. However, such a progression is undesirable. Rather, decreasing the winding tightness from the inside to the outside is desirable. One possibility of reducing the line load involves building up pressure in the winding bed, for example in the form of an air cushion, which at least partially supports the winding roll so that the load pressure on the support rollers is reduced. However, in an embodiment of this kind, it must be assured that the winding bed can be sealed. On the one hand, the air losses should be kept low, yet, one must be able to increase the required pressure in the first place.
SUMMARY OF THE INVENTION
The present invention provides a web winding device and method for winding a material web into a winding roll. The device operates to uncouple the web tension that is required for cutting, from the web tension that is required for producing the winding tightness. The device comprises a rotatably driven first support roller having a circumferential shell, with a plurality of shell openings penetrating the shell. A plurality of conduits is axially disposed with the first support roller and axially extends to a stationary end face section. At least one shell opening is in communication with a conduit. A second support roller is also provided, and a winding bed area is defined by the first and second support rollers. A winding bed pressurization device may also be present in the winding bed area, and a seal is fixedly mounted to the end face section and is stationary relative to the rotation of the first support roller. The conduits are sequentially adjacent to the seal (i.e., each conduit is sequentially subjected to the seal) over a portion of the rotation of said first support roller. The seal is present between the first support roller and the stationary end face section.
In the device according to the present invention, the seal may be either a roller pressurization device or a flat seal. The first support roller may also be configured to provide suction at its surface, the suction being present during the winding of the material web.
The shell openings of the device may be in communication with a suction device, the suction device being fixedly relative to the rotation of the first support roller. The suction may also be adjustable in magnitude. Additionally, the magnitude of the suction during winding may be less intense than the magnitude of the suction during the changing of a roll of the material web. Further, the magnitude of the suction during winding may be less intense than the magnitude of the suction during the changing of a roll of the material web.
At the end face of the device, the conduit may be connected to a suction device as a function of rotational position of the first support roller. At least one shell opening is radially connected to be in communication with a conduit, the cross-sectional area of each the conduit being greater that the cross-sectional area of each shell opening.
The outer surface of the suction zone of the first support roller may comprise a plurality of active elements that are both circumferentially and axially arranged and are aligned in relation to one another. Additionally, all active elements may be configured identically. The active elements may further have an elastic surface.
The web winding device may alternatively comprise a suction device fixedly mounted to the end face, the suction device defining a suction zone upstream from the winding bed area with respect to a rotation direction of the first roller, the suction zone transmitting suctional force through the shell openings.
Additionally, the end face of the first support roller may have a seal adjacent to the conduits, whereby each conduit may sequentially come into contact with the seal, the seal being in communication with the winding bed area via the shell openings and preventing the passage of gas through the shell openings communicating with the winding bed area.
The winding bed area may further have a sealing box for sealing the winding bed area. A roller pressurization device is provided adjacent to the conduits whereby each conduit may sequentially come into contact with the roller pressurization device. The roller pressurization device is in communication with the winding bed area via the shell openings and provides pressurized gas in the winding bed area.
The present invention also

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Web winding device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Web winding device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Web winding device and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2450407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.