Electrical computers and digital processing systems: multicomput – Remote data accessing
Reexamination Certificate
1998-03-18
2004-11-09
Jaroenchonwanit, Bunjob (Department: 2143)
Electrical computers and digital processing systems: multicomput
Remote data accessing
C709S219000
Reexamination Certificate
active
06816892
ABSTRACT:
TECHNICAL FIELD
The present invention relates to network communications and security, and more particularly to an arrangement for a network server that minimizes network traffic and unauthorized data uploads to the network server.
BACKGROUND ART
The Internet is not a physical or tangible entity, but rather a giant network which interconnects innumerable smaller groups of linked computer networks. It is thus a network of networks. This is best understood if one considers what a linked group of computers—referred to here as a “network”—is, and what it does. Small networks are now ubiquitous (and are often called “local area networks”). For example, in many United States Courthouses, computers are linked to each other for the purpose of exchanging files and messages (and to share equipment such as printers). These are networks.
Some networks are “closed” networks, not linked to other computers or networks. Many networks, however, are connected to other networks, which are in turn connected to other networks in a manner which permits each computer in any network to communicate with computers on any other network in the system. This global Web of linked networks and computers is referred to as the Internet.
The nature of the Internet is such that it is very difficult, if not impossible, to determine its size at a given moment. It is indisputable, however, that the Internet has experienced extraordinary growth in recent years. In 1981, fewer than 300 computers were linked to the Internet, and by 1989, the number stood at fewer than 90,000 computers. By 1993, over 1,000,000 computers were linked. Today, over 9,400,000 host computers worldwide, of which approximately 60 percent located within the United States, are estimated to be linked to the Internet. This count does not include the personal computers people use to access the Internet using modems. In all, reasonable estimates are that as many as 40 million people around the world can and do access the enormously flexible communication Internet medium. That figure is expected to grow to 200 million Internet users by the year 1999.
Some of the computers and computer networks that make up the Internet are owned by governmental and public institutions, some are owned by non-profit organizations, and some are privately owned. The resulting whole is a decentralized, global medium of communications—or “cyberspace”—that links people, institutions, corporations, and governments around the world. The Internet is an international system. This communications medium allows any of the literally tens of millions of people with access to the Internet to exchange information. These communications can occur almost instantaneously, and can be directed either to specific individuals, to a broader group of people interested in a particular subject, or the world as a whole.
To achieve this resilient nationwide (and ultimately global) communications medium, multiple links to and from each computer (or computer network) on the network has been created. Thus, a computer located in Washington, D.C. might be linked (usually using dedicated telephone lines) to other computers in neighboring states or on the Eastern seaboard. Each of those computers could in turn be linked to other computers, which themselves would be linked to other computers.
A communication sent over this redundant series of linked computers could travel any of a number of routes to its destination. Thus, a message sent from a computer in Washington, D.C., to a computer in Palo Alto, Calif., might first be sent to a computer (or router) in Philadelphia, and then be forwarded to a computer (or router) in Pittsburgh, and then to Chicago, Denver, and Salt Lake City, before finally reaching Palo Alto. If the message could not travel along that path (because of military attack, simple technical malfunction, or other reason), the message would automatically (without human intervention or even knowledge) be re-routed, perhaps, from Washington, D.C. to Richmond, and then to Atlanta, New Orleans, Dallas, Albuquerque, Los Angeles, and finally to Palo Alto. This type of transmission, and re-routing, would likely occur in a matter of seconds.
Messages between computers on the Internet do not necessarily travel entirely along the same path. The Internet uses “packet switching” communication protocols that allow individual messages to be subdivided into smaller “packets” that are then sent independently to the destination, and are then automatically reassembled by the receiving computer. While all packets of a given message often travel along the same path to the destination, if computers along the route become overloaded, then packets can be re-routed to less loaded computers.
As the communication (information) is sent along the “path” from link to link, information is continually gathered from the link sites via servers. For example, information such as the operating system, software content of the server, network software and pages of the server may be downloaded at each server site as the information travels from server to server. Hence, network access time and traffic is increased.
Accordingly, there exists a need in the art for users of a network to quickly access information while decreasing the access time and traffic on the network. There also exists a need in the art for quick access to information that is readily accessible to different users at different locations throughout the network.
SUMMARY OF THE INVENTION
To overcome the above-identified disadvantages and shortcomings of the prior art, it is a feature and advantage of the present invention to provide users of a network with quick access to information while decreasing the access time and traffic on the network.
It is another feature and advantage of the present invention to provide quick access to information that is readily accessible to different users at different locations throughout the network.
According to one aspect of the invention, there exists a method for using an optical disk as a server in a network, such as the world wide web, reducing network access time and traffic. According to the method, at least one optical disk is placed in a device, at least one device is connected to the network, information from a server on the network is copied onto the optical disk, and the information on the optical disk is accessed without directly accessing the server.
In one embodiment of the invention, the method reproduces information stored on the optical disk onto a plurality of secondary optical disks, distributes the optical disks and plurality of secondary optical disks, and updates information stored on the optical disk and plurality of secondary optical disks by copying updated information from the server onto the optical disk and plurality of secondary optical disks.
In another embodiment of the invention, the optical disk acts as a back-up for the information copied onto the server.
According to another aspect of the invention, a device is configured for connection to a network for reducing network access time and network traffic. At least one optical disk, placed in the device, includes information copied from a server on the network, and enables a user to access the information on the optical disk without having to access the server directly.
In one embodiment of the invention, the information on the disk includes the operating system, web server software, network software, and web pages.
REFERENCES:
patent: 5005122 (1991-04-01), Griffin et al.
patent: 5668872 (1997-09-01), Morishima et al.
patent: 5682330 (1997-10-01), Seaman et al.
patent: 5721815 (1998-02-01), Otteesen et al.
patent: 5752159 (1998-05-01), Faust et al.
patent: 5778368 (1998-07-01), Hogan et al.
patent: 5787470 (1998-07-01), DeSimone et al.
patent: 5790785 (1998-08-01), Klug et al.
patent: 5808662 (1998-09-01), Kinney et al.
patent: 5809145 (1998-09-01), Slik et al.
patent: 5832222 (1998-11-01), Dziadosz et al.
patent: 5860068 (1999-01-01), Cook
patent: 5862325 (1999-01-01), Reed et al.
patent: 5864848 (1999-01-01), Hovitz et al.
patent: 5864852 (1999-01
Chiang Luo-Jen
Papierniak Karen A.
Jaroenchonwanit Bunjob
Lowe Hauptman & Gilman & Berner LLP
NCR Corporation
LandOfFree
Web-on-cd does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Web-on-cd, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Web-on-cd will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3347008