Web-based multi-channel analyzer

Electrical computers and digital processing systems: multicomput – Remote data accessing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000, C709S241000, C324S312000, C250S363010

Reexamination Certificate

active

06668277

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to systems and methods for processing and distributing spectrographic pulse data, and more particularly, to a multi-channel analyzer for conveniently acquiring, processing, and distributing spectrographic pulse data over a computer network.
2. The Relevant Technology
Radioactive materials are unstable and emit radiation in the form of alpha, beta, gamma, or X-rays. Many different types of radiation detectors have been designed and manufactured to produce data corresponding to radiation emitted by radioactive materials.
One type of radiation detector is a pulse-mode detector, in which a separate electrical pulse is generated for each individual radiation quantum (e.g., a gamma ray) that interacts with a detector. A high-purity germanium detector, which is often cooled by liquid nitrogen, is one example of a pulse-mode detector. By way of example, a gamma ray interacts with a detector surface coupled to a cathode and an anode. A portion of the energy of the gamma ray may be deposited on the detector to produce a charge. From the point of interaction, freed electrons drift towards the anode and ions (or holes) drift towards the cathode. A signal relating to the produced charge is often captured and manipulated by charge-sensitive preamplifiers and shaping amplifiers, resulting in a voltage pulse. The peak amplitude of such a voltage pulse is proportional to the energy deposited on a detector by a gamma ray.
Analog-to-digital converters (ADCs) are frequently employed to generate a digital number indicating the height, or the amplitude, of each voltage pulse. Such digital pulse data may be gathered and analyzed to learn more about the corresponding radioactive material. For example, the digitized pulse data may be categorized into channels, each channel indicating a specific energy level range into which the amplitude of the pulse falls. Energy levels are often measured in kiloelectron volts (KeVs). Devices that analyze multiple channels of pulse data are called multi-channel analyzers. Pulse data is often displayed on a chart showing the number of pulses (or counts) that the detector receives at a specific energy level range.
These charts frequently show a series of consecutive energy level ranges and a number of counts received in each range. By analyzing count patterns created thereby, experts in the field may make determinations regarding the corresponding radioactive material. Such determinations may be made by automated analysis algorithms, a visual inspection, or a combination of the two. The count patterns may reveal thickness, age, density, presence, or other characteristics of a corresponding radioactive material.
This technology is useful in a number of different fields. For example, national security requires detection and analysis of illegally transported or used radioactive materials. The food industry may monitor the radiation levels of irradiated food, such as meat, fruit, or vegetable products that have been subjected to low doses of gamma or X-rays to control food borne pathogens. Plainly, the nuclear power industry is also interested in monitoring radiation levels in and around nuclear power plants or nuclear waste disposal sites to prevent human, animal, or environmental exposure to radiation. For the same reasons, environmentalists and consumer-health advocates are similarly concerned about detecting radioactive materials.
Radioactive materials frequently produce pulses (e.g., gamma rays) at very high rates, often in excess of 10,000 pulses per second. Capturing each pulse, or a large percentage of the pulses, may be important in analyzing the corresponding radioactive material. If a large number of pulses have been missed, the corresponding pulse height data may be misleading and could lead to a failure to recognize or correctly identify a radioactive substance. These errors could produce serious adverse consequences, resulting in breaches in national security, contaminated food, or human exposure to radioactive substances.
In order to achieve high pulse capture rates and low probability of missed pulses, dedicated hardware devices were developed and coupled with special-purpose control software running on application-specific operating system software. Experts in the field have long believed that a general-purpose operating system could not respond quickly enough to capture spectrographic pulse data at a high rate. Moreover, because of the extensive demands placed on these devices in gathering the pulse data, many such devices are not configured to perform other important tasks, such as processing and distributing pulse data. As such, conventional pulse data gathering systems provide proprietary software and a closed architecture that preclude cross-communications and operation in environments other than the proprietary environment.
As a consequence, interacting with and customizing such systems is extremely difficult. Proprietary communication protocols and formats are often employed, making it difficult or impossible to interact with these systems employing techniques, communication protocols and data formats used by general-purpose operating systems. Thus, interfacing with conventional systems creates substantial obstacles to distribution of the spectrographic pulse data through conventional techniques or protocols on a computer network. For example, conventional systems simply do not interface with UNIX or Macintosh systems. In addition, because conventional systems are proprietary, it is difficult or impossible for the user to customize such systems in accordance with the user's needs and wants.
Accordingly, a need exists for a multi-channel analyzer operating in conjunction with a general-purpose operating system that is capable of capturing rapidly produced spectrographic pulse data. A need additionally exists for a multi-channel analyzer that is configured such that standard network communication protocols and data formats used by general-purpose operating systems may be employed to access and distribute the spectrographic pulse data over a computer network. Moreover, it would be an advancement in the art to provide a multi-channel analyzer that is conveniently customizable by the end user. It would be a further advancement to provide a multi-channel analyzer that may be customized from remote locations.
BRIEF SUMMARY OF THE INVENTION
The present invention provides a Web-based multichannel analyzer (MCA) for conveniently processing and distributing spectrographic pulse data over a computer network. A Web-based MCA, in one embodiment, includes a standard single board computer, having memory and a processor and running an embedded general-purpose operating system, with added hardware to provide an interface to an external analog-to-digital converter (ADC). The Web-based MCA may further comprise software and hardware for interfacing with a network, such as the Internet. A general-purpose operating system enables convenient interaction with the Web-based MCA employing non-proprietary communication protocols and data formats.
In one embodiment, the Web-based MCA receives, or acquires, digitized pulse data through an input/output (I/O) card from an ADC. In one implementation, the ADC is integrated with a main board of the Web-based MCA and, thus, the Web-based MCA may directly receive and process analog pulse data.
One embodiment of this invention involves a kernel device driver for receiving and temporarily storing digitized pulse data received from the I/O card. The kernel device driver resides at the operating system's kernel level as a loadable kernel module. Thus, the kernel-level device driver is integrated with the operating system. The kernel device driver may be integrated with the general-purpose operating system. With an open-source operating system a user may customize the kernel-level module.
In one embodiment, the kernel-level module is capable of acquiring digitized pulse data for at least 10,000 pulses per second so that accurate spectrographic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Web-based multi-channel analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Web-based multi-channel analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Web-based multi-channel analyzer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3171289

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.