Weatherable colored resin compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S358000, C524S359000, C524S500000, C524S612000

Reexamination Certificate

active

06228910

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to coloration of synthetic resins, and more particularly to the provision of weatherable colored resins.
With the ever-expanding areas of use of synthetic resins and especially thermoplastic resins, it is of increasing interest to produce resinous compositions having many types of surface appearance, including coloration. Coloration of resins can be achieved by the use of dyes or pigments. One of the characteristics of pigments is their insolubility in the resin phase, which can lead to adverse consequences including loss of physical properties and loss of surface gloss. It is often preferred, therefore, to employ dyestuffs for coloration since they dissolve in the resin, forming a homogeneous composition which retains the gloss and advantageous physical properties characteristic of the neat resin.
A factor of concern in the coloration of synthetic resins is weatherability. Many dyes and other industrial colorants undergo photodegradation upon exposure to radiation of various wavelengths, often in the ultraviolet region of the spectrum. Thus, the resinous articles containing such colorants suffer a loss of color.
It is of increasing interest, therefore, to produce substantially color-stable resinous articles. It is of further interest to produce articles having a high degree of resistance to weathering and the color changes caused thereby.
SUMMARY OF THE INVENTION
The present invention is based on the discovery that certain arylate polymers absorb radiation in a region of the ultraviolet spectrum that can adversely affect the coloration of many dyes and other colorants for resins. In particular, such arylate polymers absorb in the 300-400 nm region. Thus, their presence protects the colorants from photodegradation and improves color stability.
One aspect of the invention, therefore, is resinous compositions comprising the following and any reaction products thereof:
(A) an arylate polymer which is a 1,3-dihydroxybenzene isophthalate/terephthalate comprising structural units of the formula
optionally in combination with structural units of the formula
wherein each R
1
is a substituent, R
2
is a divalent C
3-20
aliphatic, alicyclic or mixed aliphatic-alicyclic radical and p is 0-3; and
(B) at least one dye which undergoes chemical degradation upon exposure to ultraviolet radiation in the wavelength range of 300-400 nm.
Another aspect of the invention is resinous compositions comprising components A and B as defined above, and (C) at least one resin different from component A, and any reaction products thereof.
DETAILED DESCRIPTION; PREFERRED EMBODIMENTS
For the sake of brevity, the constituents of the compositions of this invention are defined as “components” irrespective of whether a reaction between said constituents occurs at any time. Thus, the compositions may include said components and any reaction products thereof.
Component A, the arylate polymer, is a 1,3-dihydroxybenzene isophthalate/terephthalate comprising structural units of formula I. It may also contain other acid groups, such as those derived from aliphatic dicarboxylic acids such as succinic acid, adipic acid or cyclohexane-1,4-dicarboxylic acid, or from other aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, preferably in amounts no greater than about 30 mole percent. Most often, however, the base polymer consists of units of formula I, optionally in combination with units of formula II.
The units of formula I contain a resorcinol or substituted resorcinol moiety in which any R
1
groups are halo or C
1-12
alkyl or a mixture thereof, and p has the value of 0-3. Preferably R
1
groups are C
1-4
primary or secondary alkyl groups, i.e., methyl, ethyl, propyl or butyl with methyl being more preferred. The most preferred moieties are resorcinol moieties, in which p is zero, although moieties in which p is 1 are also excellent with respect to the invention. Said resorcinol moieties are most often bound to isophthalate and/or terephthalate moieties.
Said 1,3-dihydroxybenzene moieties are bound to aromatic dicarboxylic acid moieties which may be monocyclic, e.g., isophthalate or terephthalate, or polycyclic, e.g., naphthalenedicarboxylate. Preferably, the aromatic dicarboxylic acid moieties are isophthalate and/or terephthalate. Either or both of said moieties may be present. For the most part, both are present in a molar ratio of isophthalate to terephthalate in the range of about 0.25-4.0:1, preferably about 0.4-2.5:1, more preferably about 0.67-1.5: 1, and most preferably about 0.9-1.1:1.
In the optional soft block units of formula II, resorcinol or substituted resorcinol moieties are again present in ester-forming combination with R
2
which is a divalent C
3-20
aliphatic, alicyclic or mixed aliphatic-alicyclic radical. Preferably, R
2
is a C
3-20
straight chain alkylene, C
3-12
branched alkylene, or C
4-12
cyclo- or bicycloalkylene group. More preferably, R
2
is aliphatic and especially C
8-12
straight chain aliphatic.
It is usually found that the arylate polymers most easily prepared, especially by interfacial methods, consist of units of formula II and especially combinations of resorcinol isophthalate and terephthalate units in a molar ratio in the range of about 0.25-4.0:1, preferably about 0.4-2.5: 1, more preferably about 0.67-1.5: 1, and most preferably about 0.9-1.1:1. When that is the case, the presence of soft block units of formula II is usually unnecessary. If the ratio of units of formula II is outside this range, and especially when they are exclusively iso- or terephthalate, the presence of soft block units may be preferred to facilitate interfacial preparation. A particularly preferred arylate polymer containing soft block units is one consisting of resorcinol isophthalate and resorcinol sebacate units in a molar ratio between 8.5:1.5 and 9.5:0.5.
Arylate polymers useful as the base polymer may be prepared by conventional esterification reactions which may be conducted interfacially, in solution, in the melt or under solid state conditions, all of which are known in the art. Typical interfacial preparation conditions are described in copending application Ser. No. 09/030,076, now U.S. Pat. No. 5,916,997, the disclosure of which is incorporated by reference herein.
Also useful as the base polymer are the block copolyestercarbonates disclosed and claimed in abandoned, commonly owned application Ser. No. 09/181,902, the disclosure of which is also incorporated by reference herein. They include block copolymers comprising moieties of the formula
wherein R
1
and p are as previously defined, each R
3
is independently a divalent organic radical, m is at least about 10 and n is at least about 4. Soft block moieties corresponding to formula II may also be present. The most preferred moieties are again resorcinol moieties, in which p is zero.
In the organic carbonate blocks, each R
3
is independently a divalent organic radical. Preferably, said radical comprises at least one dihydroxy-substituted aromatic hydrocarbon, and at least about 60 percent of the total number of R
3
groups in the polymer are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals. Suitable R
3
radicals include m-phenylene, p-phenylene, 4,4′-biphenylene, 4,4′-bi(3,5-dimethyl)-phenylene, 2,2-bis(4-phenylene)propane, 6,6′-(3,3,3′, 3′-tetramethyl-1,1′-spirobi[1H-indan]) and similar radicals such as those which correspond to the dihydroxy-substituted aromatic hydrocarbons disclosed by name or formula (generic or specific) in U.S. Pat. No. 4,217,438, which is incorporated herein by reference. A particularly preferred divalent organic radical is 2,2-bis(p-phenylene)isopropylidene and the dihydroxy-substituted aromatic hydrocarbon corresponding thereto is commonly known as bisphenol A.
Such polyarylates may undergo a Fries rearrangement to form hydroxybenzophenone moieties. One of the properties of such moieties is their capability of absorbing ultraviolet radiatio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Weatherable colored resin compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Weatherable colored resin compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weatherable colored resin compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2528247

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.