Weapon location by acoustic-optic sensor fusion

Communications – electrical: acoustic wave systems and devices – Distance or direction finding – With electromagnetic wave

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06621764

ABSTRACT:

1. FIELD OF THE INVENTION
The present invention relates to a system and method which combines various detection, location and tracking technologies in order to localize, calculate, determine, and/or track the source of hostile weapons fire such as that emanating from a sniper or an overhead “top-attack” weapon and to employ countermeasures adapted to protect a vehicle and/or personnel from this hostile weapons fire.
2. Background of the Invention
Previous weapon location systems (as used throughout this Application, the term “system” refers to a combination, in one embodiment, of hardware, software, and/or firmware which cooperates to perform one or more applications or functions) used either a purely or substantially singular acoustical detection apparatus or techniques or a purely or substantially singular optical detection apparatuses and/or techniques to locate the source of hostile weapon fire. Due to the problems and/or drawbacks associated with purely acoustical and purely optical detection techniques or substantially pure or singular technology techniques, the present invention combines the two concepts or technologies in order to utilize the advantages and substantially eliminate the disadvantages of each technology. Applicant has found that the combination of acoustical and optical as well as other detection and tracking mechanisms greatly enhances the overall detection capability of the system. Applicant believes that there was, prior to Applicant's, invention, no and/or substantially little or substantially no motivation to combine these techniques in the manner done by Applicant and which adequately achieved the results and/or goal of Applicant's invention.
Acoustical detection systems generally determine the direction and/or location of hostile weapon fire by measuring and/or calculating the various times of arrival of “sound” or acoustical energy generated by the hostile fire by the use of generally and equally spaced microphones formed or placed in a microphone array. Most prior acoustical hostile weapons fire detection and/or location systems are characterized by generally omnidirectional detection, only moderate accuracy and a substantially minimal false alarm rate. While such prior acoustical systems provide useful information for many applications, purely and/or substantially pure acoustical detection systems are not entirely appropriate for certain applications, such as applications involving the detection of the firing of supersonic and/or substantially supersonic projectiles, and the tracking of overhead “top attack” weapons. That is, supersonic projectiles arrive at the target prior to the arrival of the acoustical energy generated by the firing of these supersonic projectiles. Thus, an immediate counter-measure launch, necessary to destroy the incoming supersonic missiles, is generally not possible when a purely or singular acoustical system is used to detect the presence and/or location of such supersonic enemy fire. Additionally, it is well known that acoustical detection systems: can have a relatively large error in the determination of the location of the hostile weapon. In the past, this was not really a problem since offensive countermeasures which were used to destroy the hostile weapon usually comprised one or more missiles which destroyed a relatively large area. This wide area of destruction mostly and adequately compensated for the errant location data provided by the acoustical detection and/or location systems. However, war has changed. Oftentimes snipers, located within relatively densely populated areas are now encountered. Hence, large destructive countermeasures, necessary to compensate for errant location calculations, are generally not appropriate since they might hurt or kill many innocent people and destroy many valuable and historic buildings and/or other structures.
Optical detection systems generally determine the location and/or direction of hostile weapons fire by observing and/or sensing the position of the optical energy released or generated when a weapon is discharged. Most optical systems are characterized by relatively high accuracy, relatively high amounts or levels of false alarms and a rather limited field of view. Purely optical systems are also of rather limited value in some ambient light conditions where distinguishing the flash of a weapon from false flashes or other types of visible radiation is difficult. Purely optical systems are also of rather limited value where a weapon is obstructed or outside of the optical system's field of view. Hence, these prior optical detection systems were used only in very few specific applications, mainly due to their relatively high false alarm rate. Heretobefore, only one type of these systems was used to determine/calculate the location of adverse weaponry. No one, prior, to Applicant's discovery and/or invention, had realized the benefit of combining these two types of dissimilar systems in a manner which would overcome the drawbacks of each of these systems and provide a more robust system.
That is, Applicant was the first to realize that great accuracy and usefulness could be achieved by first using an acoustical system to determine the general location of the hostile weapons fire, a function that such prior acoustical systems performed relatively well, and then using an optical system or referring to or reviewing captured optical data in order to further refine the location within the field established by the acoustical system. In this manner, the relatively notorious “false alarms” associated with the optical systems could be minimized since only the optical data which emanates and/or is generated from the field of view formed or “fixed” by the acoustical technique would be reviewed. Moreover, the concomitant use of optical system data could allow even supersonic projectiles to be detected. This new combined system thus allows great accuracy which is necessary when detecting hostile weapons fire in cities and other areas in which greatly destructive missile counteroffensive apparatuses cannot be used.
Importantly, Applicant has discovered that the present invention is especially useful in detecting, tracking and countering attacks from overhead or “top attack” weapons. It is known that armored military vehicles generally have their strongest armor (greatest thickness) on their respective sides, and on their respective front and back surfaces. The armor covering the top and the bottom of armored vehicles is generally somewhat thinner, less protective, and generally more susceptible to penetration than the armor on the sides of such vehicles. As a result, armored vehicles are generally known and/or thought to be more difficult to attack using weapons that have horizontal trajectories, and are more vulnerable to weapons following and/or exhibiting steep travel trajectories and weapons which may be launched or fired from directly above these vehicles. Until relatively recently, the “threat” weapons or the weapons used to attack armored vehicles have been almost exclusively horizontal trajectory weapons.
However, to exploit the higher vulnerability of the “topside” armor of military armored mobile vehicles, new weapons have been developed. Generally, these weapons can direct shaped charges and launch projectiles towards armored vehicles from a location directly above the vehicle.
A diagram of the travelling and/or firing trajectory or path
102
of one such weapon and the significant events of its arming sequence is shown in FIG.
12
. As illustrated in
FIG. 12
, the overhead weapon
120
comprises a delivery device
100
, typically a 155 mm artillery projectile, which is initially launched and carries or “delivers” the overhead or “top attack” weapon portion
104
to a point approximately 1200 meters or more above the target vehicle
118
. At this point, top attack weapon portion
104
generally comprising a “package” containing two submunition “packages”
106
,
108
is expelled from the delivery projectile
100
by a small explosive charge (i.e., “the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Weapon location by acoustic-optic sensor fusion does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Weapon location by acoustic-optic sensor fusion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weapon location by acoustic-optic sensor fusion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3047099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.