Optical communications – Multiplex – Wavelength division or frequency division
Reexamination Certificate
2002-12-20
2004-08-10
Negash, Kinfe-Michael (Department: 2633)
Optical communications
Multiplex
Wavelength division or frequency division
C398S050000, C398S083000, C398S084000, C398S085000, C398S059000, C398S068000
Reexamination Certificate
active
06775479
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method and apparatus for establishing communication over an optical network employing wavelength division multiplexing.
BACKGROUND OF THE INVENTION
The ever-increasing demand for bandwidth has spurred the growth of high speed transport networks. Currently, the key standard for use in such networks is SONET, which is an acronym for Synchronous Optical Network. The SONET standard defines a hierarchy of optical transmission rates over point-to-point and ring network topologies. For example, the SONET optical carrier—level 3 (OC-3) transmits at 1 55 Mb/s and OC-12 transmits at 622 Mb/s.
SONET was developed to provide a survivable transport infrastructure that could carry a range of different payload protocols and payload bit rates.
Survivability is achieved in SONET using a ring topology with a SONET-defined standard protocol for coordinating traffic restoration in the event of a failure. On a ring, there are always two diverse routes that can be used to interconnect any two nodes on the ring. In the event of a failure of one of those routes, spare capacity on the other route is used to restore the traffic affected by the failure. In SONET, every node must terminate the entire optical signal in order to be able to access every payload, even though typically a node would only access a small subset of the payloads and pass the rest of them downstream to other nodes. Termination of the entire optical signal is also required to give each node access to an automatic protection switching (APS) protocol that coordinates access to the spare capacity by the node during failure events. Unfortunately, this requirement of SONET to terminate the entire optical signal at every node makes upgrading the capacity of the ring a slow and costly process, because every node must be upgraded even though it may be that only one node requires the additional capacity.
In order to carry a variety of payloads and payload bit rates, the SONET standard defines a payload envelope structure into which all payloads must be mapped. This envelope is then carried within one timeslot within the time division multiplexed SONET signal. Although this provides a SONET network with the ability to carry a variety of payloads, a new payload cannot be transported until a mapping is defined and the interface circuit is developed and deployed. In addition, if there is insufficient spare capacity in the network to handle the new payload bit rate, then the entire network may have to be upgraded. Thus, SONET networks are not responsive to the needs of today's services, which are demanding greater capacity and introducing a wide range of protocols.
The networks of today's telecommunications carriers typically consist of an access portion that connects end-users to the carrier's network, and a transport portion (sometimes called backbone or core network) that provides the interconnection between the access networks. The access portion of the network is under pressure to provide a greater variety of signal types such as asynchronous transfer mode (ATM), asynchronous digital subscriber loops (ADSL), and SONET, to handle the emerging diversity of services. These new payloads also tend to require greater bit rates to support the underlying services. Transport networks are under pressure to provide more capacity due to the higher bit rate services coming out of the access networks as well as the growth in the number and size of the access networks reflecting the growth in the number of end-users.
An object of the invention is to alleviate the limitations in SONET-based networks.
SUMMARY OF THE INVENTION
According to the present invention there is provided a communications network employing wavelength division multiplexing, comprising a plurality of nodes; an optical transmission medium interconnecting said nodes, said transmission medium being capable of a carrying a plurality of wavelengths organized into bands; and an interface at each node for dropping a band associated therewith, adding a band carrying traffic for another node, and passively forwarding other bands; whereby communication can be established directly between a pair of nodes in said network sharing a common band without the active intervention of any intervening node.
A network in accordance with the invention is protocol and bit rate independent and is therefore more responsive than SONET to the demands placed on the access and transport networks of telecommunications carriers. Each payload is carried on separate optical wavelengths and payloads are multiplexed using wavelength division multiplexing techniques.
A band consists of a group of closely spaced wavelengths. A guard space normally exists between the bands to allow for simple filtering of a band out of the overall spectrum. For example, a band may consist of four wavelengths spaced at 1.6 nm intervals giving a total width for the band of 4×1.6=6.4 nm. With a guard band of 3.2 nm, the overall band spacing would be 6.4+3.2=9.6 nm.
A band is associated with the connection between two nodes, such that if, for example, node A wishes to communicate with node C via intervening node B, both node A and node C must access (add/drop) the same band, say band X. Node A would transmit to node C on band X, which would be passively forwarded by intervening node.
The use of bands as distinct from discrete wavelengths allows the filter specifications to be relaxed in the area of sideband roll-off slope since there are cascaded filters involved at each node. A primary (or band) filter discriminates a band of wavelengths. Further sub-division into specific channels is done with a narrow width filter(s) that is sub-tended after the band filter.
The use of a multi-level filtering approach is more energy efficient than other arrangements for ring networks. This is due to the fact that the band filter is the primary filter element that is repeated around the ring. As nodes are added to the ring, the attenuation loss due to the band filter element does not rise as fast as the case where individual wavelengths are filtered out at a node with the residual band being passed on.
The interface is typically in the form of a filter which separates out the band to be dropped and forwards the other bands by reflection. The filter acts as a multiplexer/demultiplexer which drops and adds the band associated with the node from the transmission medium.
The filter is preferably an interference filter with minimal loss, preferably less than 1 dB, and typically 0.5 dB. The division of the wavelength spectrum into bands, each associated with a node, is an important factor in reducing the loss at the passive filter. If individual wavelengths were employed, losses in the order of 3 to 6 dB could be expected, and the maximum size of the network would be very much restricted.
An important advantage of the present invention is that each wavelength essentially provides a protocol independent high speed bit pipe between a pair of nodes with minimal loss.
A node in one embodiment may also include a cross connect switch for changing wavelengths. For example, if a path is established between node A and node C over band c, and between node C and node F over band f, and no path exists between node A and node F, node A can send traffic for node F first to node C, which drops the band c, detects that the traffic is for node F, and passes it through the cross connect to forward the traffic in band f, which will be dropped by node F.
The optical path for the network is thus passive except for nodes where wavelengths are add/dropped. The system also has low overall loss in any wavelength path so that no optical amplifiers need be employed to achieve a 30 km ring circumference. The overall power loss budget is estimated at 30 dB.
In a typical maximum configuration system, approximately ⅓ of the optical loss is in the fiber (~9 dB) and approximately ⅓ the loss is in the optical add/drop filters (16 band filters @0.5 db=8 dB). The remainder of t
Liu Kexing
Milton David
Pigeon Michel
Totti Gino
Valis Tomas
Hunton & Williams LLP
Nortel Networks Corporation
LandOfFree
WDM optical network with passive pass-through at each node does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with WDM optical network with passive pass-through at each node, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and WDM optical network with passive pass-through at each node will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3307260