Wavelength-shifting probes and primers and their use in assays a

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

436501, 536 221, 536 231, 536 2431, 536 2432, 536 2433, C12Q 168

Patent

active

060371307

ABSTRACT:
Hairpin-forming oligonucleotide probes and primers triple-labeled with a pair of florophores, a shorter wavelength harvester and a longer wavelength emitter, and a quencher. When the probes and primers are stimulated by light that excites the harvester, opening causes an increase in fluorescence by the emitter, while fluorescence from the harvester is continually suppressed. The probes and primers may be used for detection of nucleic acid targets in assays, including amplification assays. Assay kits are provided.

REFERENCES:
patent: 4261968 (1981-04-01), Ullman et al.
patent: 4725536 (1988-02-01), Fritsch et al.
patent: 4725537 (1988-02-01), Fritsch et al.
patent: 4752566 (1988-06-01), Collins et al.
patent: 4766062 (1988-08-01), Diamond et al.
patent: 4822733 (1989-04-01), Morrison
patent: 5082830 (1992-01-01), Brakel et al.
patent: 5118801 (1992-06-01), Lizardi et al.
patent: 5210015 (1993-05-01), Gelfand et al.
patent: 5241060 (1993-08-01), Engelhardt et al.
patent: 5260433 (1993-11-01), Engelhardt et al.
patent: 5312921 (1994-05-01), Glazer et al.
patent: 5332659 (1994-07-01), Kidwell
patent: 5348853 (1994-09-01), Wang et al.
patent: 5487972 (1996-01-01), Gelfand et al.
patent: 5491063 (1996-02-01), Fisher et al.
patent: 5532129 (1996-07-01), Heller
patent: 5538848 (1996-07-01), Livak et al.
patent: 5565322 (1996-10-01), Heller
patent: 5571673 (1996-11-01), Picone
patent: 5622821 (1997-04-01), Selvin et al.
M.E. DePecol, et al., "Syntheses, Properties, And Use Of Fluorescent N-(5'-Phospho-4'-Pyridoxyl) Amines In Assay Of Pyridoxamine (Pyridoxine) 5'-Phosphate Oxidase," Analytical Biochemistry 101: 435-441 (1980).
H.A. Erlich, et al., "Recent Advances In The Polymerase Chain Reaction," Science 252: 1643-1651 (1991).
D. Gillespie, et al., "A Quantitative Assay For DNA-RNA Hybrids With DNA Immobilized On A Membrane," J. Mol. Biol. 12: 829-842 (1965).
Z. Guo, et al., "Enhanced Discrimination Of Single Nucleotide Polymorphisms By Artificial Mismatch Hybridization," Nature Biotechnology 15: 331-335 (1997).
R.P. Haugland, et al., "Dependence Of The Kinetics Of Singlet-Singlet Energy Transfer On Spectral Overlap," P.N.A.S. (U.S.A.) 63: 23-30 (1969).
P.M. Holland, et al., "Detection Of Specific Polymerase Chain Reaction Product By Utilizing the 5'-3' Exonuclease Activity Of Thermus Aquaticus DNA Polymerase," P.N.A.S. (U.S.A.) 88: 7276-7280 (1991).
P.M. Holland, et al., "Detection Of Specific Polymerase Chain Reaction Product By Utilizing the 5'-3' Exonuclease Activity Of Thermus Aquaticus DNA Polymerase," Clinical Chemistry 38: 462-463 (1992).
E.N. Hudson, et al., "Synthesis And Characterization Of Two Fluorescent Sulfhydryl Reagents," Biochemistry 12: 4154-4161 (1973).
V.M. Ingram, "Gene Mutations In Human Haemoglobin: The Chemical Difference Between Normal And Sickle Cell Haemoglobin," Nature 180: 326-328 (1957).
U. Landegren, et al., " A Ligase-Mediated Gene Detection Technique," Science 241: 1077-1080 (1988).
R. Lathe, "Synthetic Oligonucleotide Probes Deduced From Amino Acid Sequence Data, Theoretical And Practical Considerations," J. Mol. Biol. 183: 1-12 (1985).
L.G. Lee, et al., "Allelic Discrimination By Nick-Translation PCR With Fluorogenic Probes," Nucleic Acid Research 21: 3761-3766 (1993).
P. Lichter, et al., "High-Resolution Mapping Of Human Chromosome 11 By In Situ Hybridization With Cosmid Clones," Science 247: 64-69 (1990).
K.J. Livak, et al., "Towards Fully Automated Genome-Wide Polymorphism Screening," Nature Genetics 9: 341-342 (1995).
H. Lomell, et al., "Quantitative Assays Based On The Use Of Replicatable Hybridization Probes," Clinical Chemistry 35: 1826-1831 (1989).
E.D. Matayoshi, et al., "Novel Fluorogenic Substrates For Assaying Retroviral Proteases By Resonance Energy Transfer," Science 247: 954-958 (1990).
J.A. Matthews, et al., "Analytical Strategies For The Use Of DNA Probes," Analytical Biochemistry 169: 1-25 (1988).
L.E. Morrison, et al., "Sensitive Fluorescence-Based Thermodynamic And Kinetic Measurements Of DNA Hybridization In Solution," Biochemistry 32: 3095-3104 (1993).
L.E. Morrison, et al., "Solution-Phase Detection Of Polynucleotides Using Interacting Fluorescent Labels And Competitive Hybridization," Analytical Biochemistry 183: 231-244 (1989).
N.C. Nelson, et al., "Detection Of All Single-Base Mismatches In Solution By Chemiluminescence," Nucleic Acid Research 24: 4998-5003 (1996).
P.S. Nelson, et al., "Bifunctional Oligonucleotide Probes Synthesized Using A Novel CPG Support Are Able To Detect Single Base Pair Mutations," Nucleic Acids Research 17: 7187-7194 (1989).
Newton, et al., Analysis Of Any Point Mutation In DNA. The Amplification Refractory Mutation System (ARMS) Nucleic Acids Research 17: 2503-2516 (1989).
M. Orita, et al., "Detection Of Polymorphisms Of Human DNA By Gel Electrophoresis As Single-Strand Conformation Polymorphism" P.N.A.S. (U.S.A.) 86: 2766-2770 (1989).
H. Orum, et al., "Single Base Pair Mutation Analysis By PNA Directed PCR Clamping," Nucleic Acids Research 21: 5332-5336 (1993).
R.K. Saiki, et al., "Genetic Analysis Of Amplified DNA With Immobilized Sequence-Specific Oligonucleotide Probes," P.N.A.S. (U.S.A.) 86: 6230-6234 (1989).
P.R. Selvin, "Fluorescence Resonance Energy Transfer," Methods in Enzymology 246: 300-335 (1995).
D. Shore, et al., "DNA Flexibility Studied By Covalent Closure Of Short Fragments Into Circles," P.N.A.S. (U.S.A.) 78: 4833-4837 (1981).
S. Sixou, et al., " Intracellular Oligonucleotide Hybridization Detected By Fluorescence Resonance Energy Transfer," Nucleic Acids Research 22: 662-668 (1994).
L. Stryer, "Fluorescence Energy Transfer As A Spectroscopic Ruler," Ann. Rev. Biochem. 47: 819-846 (1978).
N. Tibanyenda, et al., The Effect Of Single Base-Pair Mismatches On The Duplex Stability Of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) .cndot. d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A), Eur. J. Biochem. 139: 19-27 (1984).
S. Tyagi, et al., Molecular Beacons: Probes That Fluoresce Upon Hybridization, Nature Biotechnology 14: 303-308 (1996).
E.F. Ullman, et al., "Fluorescent Excitation Transfer Immunoassay," The Journal of Biological Chemistry 251: 4172-4178 (1976).
G.T. Walker, et al., Strand Displacement Amplification--An Isothermal, In Vitro DNA Amplification Technique Nucleic Acids Research 20: 1691-1696 (1992).
G.T. Wang, et al., "Design And Synthesis Of New Fluorogenic HIV Protease Substrates Based On Resonanc Energy Transfer," Tetrahedron Letters 31: 6493-6496 (1990).
H. Werntges, et al., "Mismatches In DNA Double Strands: Thermodynamic Parameters And Their Correlation To Repair Efficiencies," Nucleic Acids Research 14: 3773-3790 (1986).
S.J. Wood, "DNA-DNA Hybridization In Real Time Using BIAcore," Microchemical Journal 47: 330-337 (1993).
C. Yang et al., "Studies Of Transfer RNA Tertiary Structure By Singlet-Singlet Energy Transfer," P.N.A.S. (U.S.A.) 71: 2838-2842 (1974).
R. Youil et al., "Screening For Mutations By Enzyme Mismatch Cleavage With T4 Endonuclease," VII.P.N.A.S (U.S.A.) 92: 87-91 (1995).
Su-Chun Hung et al., "Cyanine Dyes with High Absorption Cross Section as Donor Chromophores in Energy Transfer Primers," Analytical Biochemistry 243:15-27 (1996).
Jingyue Ju et al., "Design and Synthesis of Flourescence Energy Transfer Dye-Labeled Primers and Their Application for DNA Sequencing and Analysis," Analytical Biochemistry 231: 131-140 (1995).
Jingyue Ju et al., "Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis," Proc. Natl. Acad. Sci. USA, 92:4347-4351, May (1995).
Leondios G. Kostrikis et al. "Spectral Genotyping of Human Alleles," Science 279:1228-1229 (1998).
L. G. Lee et al., "New energy transfer dyes for DNA sequencing," Nucleic Acids Research 25(14):2816-2822 (1997).
A. Nazarenko et al., "A closed tube format for amplification and detection of DNA based on energy transfer," Nucleic Acids Research 25(12):2516-2521 (1997).
Amy S. Piatek et al., "Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis," Nature Biotechnology 16:359-363 (1998).
Sanjay Tyagi et al., "Multicolor molecular beacons for allele discrimination,"

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wavelength-shifting probes and primers and their use in assays a does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wavelength-shifting probes and primers and their use in assays a, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wavelength-shifting probes and primers and their use in assays a will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-167904

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.