Wavelength-insensitive radiation coupling for multi-quantum...

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S432000, C257S436000, C257S184000

Reexamination Certificate

active

06545289

ABSTRACT:

BACKGROUND
This specification relates to devices and techniques of coupling radiation energy to a quantum-well radiation sensor.
An infrared quantum-well semiconductor sensor usually includes a quantum-well structure formed of alternating active and barrier semiconductor layers. Such a quantum-well structure can have different energy bands. Each can have multiple quantum states. An intraband transition between a ground state and an excited state in the same band (i.e., a conduction band or a valance band) can be used to detect infrared (“IR”) radiation by absorbing IR radiation at or near a selected resonance IR wavelength. The absorption of the radiation generates electric charge indicative of the amount of received radiation. The radiation-induced charge can then be converted into an electrical signal (e.g., a voltage or current) to be processed by signal processing circuitry.
The compositions of lattice-matched semiconductor materials of the quantum well layers can be adjusted to cover a wide range of wavelengths for infrared detection and sensing. In comparison with other radiation detectors, quantum-well structures can achieve, among other advantages, high uniformity, a low noise-equivalent temperature difference, large format arrays, high radiation hardness, and low cost. Infrared quantum-well sensing arrays may be used for various applications, including night vision, navigation, flight control, environmental monitoring.
A quantum-well infrared sensor usually responds to incident radiation with a polarization that is perpendicular to the quantum well layers, i.e., parallel to the growth direction. This is because this polarization can induce an intraband transition at a desired infrared wavelength. In applications based on imaging at focal plane arrays, the photodetector array is often oriented perpendicular to the scene to be imaged. Since the electric vector is essentially parallel to the quantum well layers in this arrangement, the quantum well layers absorb little or no light.
Hence, a coupling mechanism is often implemented to couple incident radiation in a way that at least a portion of the incident radiation becomes absorbable by the quantum well layers. The coupling efficiency of the coupling mechanism can be characterized by the percentage of absorbable radiation, but not what is actually absorbed, of the total incident radiation. One way to provide proper coupling is to use random reflectors or corrugated surfaces to scatter a portion of the incident radiation into the correct polarization for absorption. Alternatively, one-dimensional or two-dimensional grating couplers canal so be used to convert normally-incident radiation to waves have components that propagate along the quantum well layers.
However, the coupling efficiencies of these coupling schemes are sensitive to the wavelength of the radiation. Hence, their applications are limited to detection of radiation at a single selected wavelength or a narrow spectral range and hence cannot be used for detection of radiation of multiple colors. In addition, these coupling schemes direct only a portion of the incident beam to be parallel to the absorbing quantum well layers and hence limit the coupling efficiency to an upper limit that is determined by the percentage of the portion of radiation propagating parallel to the quantum well layers.
SUMMARY
This disclosure includes devices and techniques for coupling radiation to quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. One embodiment of a quantum-well semiconductor device includes a radiation-sensing region and non-radiation-sensing region that are adjacent to each other over a substrate. The radiation-sensing region has a plurality of alternating quantum-well layers parallel formed over the substrate and operating to absorb radiation by at least one intraband transition. A reflective surface is formed between the non-radiation-sensing region and the radiation-sensing region to have an angle with respect to the substrate to reflect incident radiation from the substrate towards the radiation-sensing region. The angle may be chosen to make the reflected radiation to propagate substantially parallel to the quantum-well layers.
These and other features and associated advantages of the devices and techniques are described in detail in the following.


REFERENCES:
patent: 5272356 (1993-12-01), Wen
patent: 5384469 (1995-01-01), Choi
patent: 5470761 (1995-11-01), McKee
patent: 5485015 (1996-01-01), Choi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wavelength-insensitive radiation coupling for multi-quantum... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wavelength-insensitive radiation coupling for multi-quantum..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wavelength-insensitive radiation coupling for multi-quantum... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064244

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.