Wavelength division multiplexing signal number monitoring...

Optical communications – Multiplex – Wavelength division or frequency division

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C398S082000, C398S084000, C398S043000, C398S033000, C398S034000, C385S024000, C385S037000, C385S031000, C385S014000, C385S043000, C385S039000

Reexamination Certificate

active

06701090

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a wavelength division multiplexing signal number monitoring apparatus and method for monitoring the number of signals in wavelength division multiplexing signal light in wavelength division multiplexing transmission systems.
2. Related Background Art
From social needs with the advent of highly technetronic society, there have been vigorous research and development concerning large-capacity, high-speed communications such as visual communications utilizing optical fiber transmission line networks and long-distance communications such as international communications. Here, wavelength division multiplexing (WDM) transmission systems, which perform high-speed/large-capacity optical communications by causing an optical fiber line to transmit therethrough a plurality of wavelengths of signal light (a plurality of signal light components having wavelengths different from each other), have been in the process of being developed and introduced as those responding to rapid increases in demands for communications due to the Internet and the like in recent years.
If the number of signals (number of channels) in signal light being transmitted changes, then the power of each signal light component may fluctuate in such a WDM transmission system because of transient fluctuations in amplification factor in an optical amplifier or the like. When the number of signal channels in the signal light being transmitted is constantly monitored, such a phenomenon of power fluctuation caused by changes in the signal number can be specified/detected so as to be distinguished from the changes in loss of the transmission line, whereby the power can be kept from fluctuating if the optical amplifier is controlled and so forth.
Known as such a signal number monitoring apparatus is one in which a demultiplexer/wavelength-branching device, such as an arrayed waveguide diffraction grating type optical demultiplexer, and light-receiving devices for detecting respective demultiplexed signal light components are combined together (see, e.g., the Institute of Electronics, Information and Communications Engineers, Communications Convention C-3-113, 1998).
FIG. 6
is a graph showing, in the case where wavelength division multiplexing signal light fed from a single input port of an arrayed waveguide diffraction grating type optical demultiplexer is branched/demultiplexed into a plurality of output ports corresponding to their respective predetermined output wavelengths, respective transmission characteristics (output wavelength characteristics) of five adjacent output ports from the (n−2)-th to the (n+2)-th output ports. Here, the center wavelength in the transmission characteristic curve of each output port is the output wavelength thereof, whereas the output wavelength interval &Dgr;&lgr;o between the adjacent output ports is made to coincide with the signal wavelength interval &Dgr;&lgr;i (&Dgr;&lgr;i=0.4 nm in
FIG. 6
) of wavelength division multiplexing signal light.
Thus, wavelength division multiplexing signal light is inputted to the arrayed waveguide diffraction grating type optical demultiplexer in which the output wavelength of each output port corresponds to the signal wavelength of respective one signal light component, the demultiplexed signal light output is detected by a light-receiving device such as photodiode connected to the respective output port, and a detection number which is the number of photodiodes having detected signal light is counted, whereby the number of signals can be monitored constantly.
SUMMARY OF THE INVENTION
In an arrayed waveguide diffraction grating type optical multiplexer/demultiplexer, e.g., normal silica waveguide type demultiplexer, however, the transmission wavelength characteristic of each waveguide greatly depends on temperature, so that the transmission characteristic curve shifts upon changes in temperature, whereby the output center wavelength shifts, for example, on the order of dk/dT=0.1 nm/10° C. This wavelength shift has a magnitude which is not negligible with respect to signal wavelength intervals of wavelength division multiplexing signal light. As a result, individual signal wavelengths of wavelength division multiplexing signal light and the respective output wavelengths outputted from output ports may lose their correspondence, so that, depending on the state of wavelength shift, for example, one channel of signal light may be outputted from two adjacent output ports, whereas two adjacent channels of signal light may be outputted from one output port, whereby the signal number cannot be counted accurately.
For example, if temperature rises by 20° C. from the state where the output wavelength of the n-th output port is 1550 nm in
FIG. 6
, then the transmission wavelength characteristic of each output port generates a wavelength shift of 0.2 nm toward the longer wavelength side. At this time, the n-th output port yields an output wavelength of 1550.2 nm, whereas the (n−1)-th output port yields an output wavelength of 1549.8 nm, whereby signal light having a signal wavelength of 1550 nm is outputted from both of these two output ports.
If the bandwidth of the transmission wavelength characteristic of each output port is set narrower in order to prevent one channel of signal light from being outputted from two output ports as such, then there will conversely be cases where no signal light is outputted from any output port, so that the signal number cannot be counted accurately.
If temperature control is carried out such that the temperature of the arrayed waveguide diffraction grating type demultiplexer is held constant, then the above-mentioned wavelength shift can be prevented, whereby the signal number can be counted accurately. Since the arrayed waveguide diffraction grating type optical demultiplexer is additionally provided with temperature control means in this case, however, it is problematic in that the apparatus increases its size and cost of manufacture, and so forth.
In view of the foregoing problems, it is an object of the present invention to provide a wavelength division multiplexing signal number monitoring apparatus and method which can accurately count the signal number independently of temperature.
The present invention provides a wavelength division multiplexing signal number monitoring apparatus for monitoring the number of signal light components (N at the maximum) included in wavelength division multiplexing signal light composed of a plurality of signal light components in which any two signal light components have a wavelength interval therebetween set to an integer multiple of &Dgr;&lgr;i. This apparatus comprises: (1) an arrayed waveguide diffraction grating type optical demultiplexer for guiding the wavelength division multiplexing signal light, demultiplexing the guided signal light at a wavelength interval of &Dgr;&lgr;o (where &Dgr;&lgr;o=&Dgr;&lgr;i/m, m being an integer of at least two), and outputting demultiplexed individual light components respectively from m×(N+l) output ports (where l is a predetermined integer of at least one); (2) a light-receiving device array comprising m×(N+l) light-receiving devices disposed so as to correspond to the respective output ports; and (3) a counter unit for receiving an output signal of each light-receiving device of the light-receiving device array and determining the number of signal light components included in the wavelength division multiplexing signal light according to the number of light-receiving devices which have detected light having a predetermined level or higher in each of m light-receiving device groups each combining (N+l) light-receiving devices together such that the light components to be detected have a wavelength interval of &Dgr;&lgr;i.
On the other hand, the present invention provides a wavelength division multiplexing signal number monitoring method for monitoring the number of signal light components (N at the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wavelength division multiplexing signal number monitoring... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wavelength division multiplexing signal number monitoring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wavelength division multiplexing signal number monitoring... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197026

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.