Wavelength detector and method of detecting wavelength of an...

Optics: measuring and testing – By shade or color – With color transmitting filter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S416000, C250S226000

Reexamination Certificate

active

06738140

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a wavelength detector that can be used to measure the wavelength of a monochromatic optical signal. Specifically, it provides an electrical output signal that is a measure of the wavelength of the input optical signal. This invention can be used in the fields of optics, telecommunications, and laser spectroscopy, and in particular to a composite optical and analog electronic system for determining the wavelength of a laser or a light source.
BACKGROUND OF THE INVENTION
Wavelength measurement devices that are used to, detect, monitor and control a laser's wavelength are emerging as integral components of laser optical systems. There are growing demands for wavelength measurement devices because the telecommunications, spectroscopic, and analytical chemistry industries have grown to the point where accurate wavelength measurement and management are major requirement. The development of dense wavelength division multiplexing (DWDM) systems in telecommunications and high sensitivity spectroscopic systems in analytical chemistry has led to a demand for wavelength measurement and control systems that are fast, accurate, give real time wavelength readouts, and are inexpensive.
In optical telecommunications systems, for example, the laser light sources have to be held to a wavelength that moves by less than 1 GHz if they are to operate in DWDM systems that have wavelength spacings of 100 GHz or less. This process is achieved using a wavelength measurement device that samples the output of a laser and provides a signal that can be used to adjust the laser's wavelength to the correct value and limit its deviation from that value. Additionally, wavelength measurement devices are used to accurately switch the laser wavelength from one telecommunications channel (ITU channel) to another. Rapid and accurate wavelength switching (microseconds to nanosecond switching times) over a wide wavelength range (40 nm at 1550 nm) is emerging as a new, and essential requirement for DWDM systems.
In spectroscopy and analytical chemistry, concentrations of chemical constituents or molecular and atomic components can be easily and inexpensively measured with tunable diode lasers provided there exists an accurate and reasonably rapid means to tune the laser to the required wavelength.
Historically, wavelength measurements have been performed in several ways.
1. A prism or diffraction grating is used to disperse different wavelengths into different directions, each direction corresponding to a unique wavelength. By scanning the directions with a slit and a detector sensitive to light intensity, the wavelength properties of an optical signal can be determined.
2. Alternatively, a scanning optical interferometer can be employed, typically a Michelson interferometer. The wavelength of an optical signal is determined by changing the length of the interferometer, by a known amount, and counting the number of interference fringes (a narrow bandwidth optical signal is assumed).
To determine the wavelength of an optical signal with very high accuracy, these measurement techniques have to be augmented by a calibration measurement:
A. The unknown wavelength is compared to a spectroscopic signal; or
B. The unknown wavelength is compared to stabilized laser signal.
Both measurement methods required mechanical movement—and therefore considerable time—for the measurement to be performed, typically on the order of seconds. Also, due to requirements for stable mechanical accuracies at micron dimensions, expensive and bulky mechanical components are required. With accurate calibration, great accuracies can be achieved with these techniques, better than 1*10
−13
meter resolution, however the time to take the measurements limited their usage in many applications. The need for mechanical stability and repeatability, combined with the complexity of calibration measurements, ensures that the measurement devices were bulky and costly, restricting their usage.
Methods have been developed that partially solve some of these problems. If measurements are to be performed on a monochromatic signal (i.e., one where the bandwidth is very small compared to the center frequency) at a specific wavelength, a dielectric bandpass filter or a Fabry-Perot etalon can be used in place of a wavelength reference. When an optical signal is incident on a dielectric filter or a Fabry-Perot etalon at or near a resonance, transmission through (or reflection from) the filter or etalon is determined by the wavelength of the optical signal and the resonant characteristics of the dielectric filter
11
a
or etalon
11
b
,
FIGS. 1 and 2
. The light beam is applied to a beamsplitter
12
. Light from the beamsplitter is applied directly to photodiode
13
and to a second photodiode
14
after it has been transmitted (or reflected) by the filter
11
. The outputs of the photodiodes are then compared. The use of a beamsplitter and photodiodes eliminates any error due to changes in beam intensity. A measurement of the transmission (or reflection) therefore determines the wavelength of the light, except that the same transmission (or reflection) can correspond to different wavelengths. When the wavelength of the source is approximately known, as is sometimes the case, this is not a problem. More generally, it means that the wavelength has been determined to be one of several values. For the case of a dielectric bandpass filter with a single transmission peak, the wavelength is determined to be one of two values. In the case of a Fabry-Perot etalon with multiple resonances, the wavelength can be one of multiple values.
These methods make possible wavelength locking of a monochromatic laser light source to a desired wavelength. When the wavelength of the source differs from the desired wavelength, that selected by the filter or etalon, the transmission of the light through the filter or etalon differs from the desired transmission as determined by the output of the two photodiodes. The difference is used to provide an error correction signal that can be used to adjust the wavelength of the laser source to the correct value.
If a bandpass dielectric filter is used for wavelength measurement or wavelength locking, the disadvantage is that it works over a limited wavelength range (typically <2 nm). This means that it cannot be used for applications such a tunable telecommunications lasers where wide wavelength tunability is an important requirement. It also has the disadvantage that the wavelength resolution is dependent on the quality of the thin film coating, which often has ripple or etalon effects that limit the accuracy with which the transmission can be measured.
If a Fabry-Perot etalon is used for wavelength measurement or wavelength locking, it allows wavelength measurement and wavelength locking at a number of different wavelengths corresponding to different resonances of the Fabry-Perot. A disadvantage is that measurement accuracies are restricted by mechanical and thermal stability. Another disadvantage is that Fabry-Perot etalon have multiple resonant transmission peaks and therefore multiple wavelengths that give the same transmission. Thus, the absolute wavelength of the measurement cannot be determined. An additional disadvantage is that the measurement accuracy obtainable with an etalon is very poor at wavelengths situated halfway between its resonances. For telecommunications systems, Fabry-Perot etalon dimensions are inversely proportional to channel spacings. Thus, as channel spacings switch from 100 GHz to 50 GHz to 25 GHz, etc, etalon sizes must double and then quadruple, meaning that they grow larger and larger.
OBJECTS AND ADVANTAGES OF THE INVENTION
It is an object of the present invention to provide an apparatus and method that overcomes many of the foregoing problems. Advantages of the present invention are that the wavelength readout signal is monotonically related to the wavelength of the incident beam over ranges that can be in excess of 40 nm, is stable to bett

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wavelength detector and method of detecting wavelength of an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wavelength detector and method of detecting wavelength of an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wavelength detector and method of detecting wavelength of an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3205698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.