Watercraft

Ships – Motorized self-propelled waterski or waterscooter-type vehicle – Having rider straddling seat

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C114S126000

Reexamination Certificate

active

06508187

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a jet-propulsive watercraft such as a personal watercraft (also referred to as a “PWC”) which ejects water rearward and planes on a water surface as the resulting reaction and, more particularly to a watercraft having auxiliary steering components as well as a main steering member such as a steering nozzle of a water jet pump.
Recently, jet-propulsive type watercrafts have been widely used in leisure, sport, and rescue activities. Such type of the watercraft is configured to have a propulsion pump, which is also called a water jet pump, to suck water (including seawater) through a water intake generally provided on a bottom of a hull. The water jet pump pressurizes the sucked water and ejects it rearward from the jet pump, thereby propelling the watercraft. While so propelled, the watercraft is turned to right or left by turning a steering nozzle, which is located rear side of the jet nozzle of the propulsion pump, rightward or left ward to change the ejecting direction of the water.
In the jet-propulsive watercraft, the propulsive force for turning the watercraft is reduced when amount of the water ejecting from the water jet pump is reduced to where the throttle of an engine mounted in the watercraft is closed. Therefore, the steering capability of the watercraft is reduced until the throttle is re-opened.
As for a reference, a Japanese Utility Model No. S
6
3-180495 (1988) discloses a catamaran or twin-hulled ship which is provided with movable flaps on starboard (right) and port (left) sides of lower position of a transom board. At least one of the two flaps is lowered into water to generate a lift while turning the ship, thereby forcing the ship to bank inwardly. Because a ship which has the above type of hull shape has relatively large stability, the disclosed particularly describes a technology in which the centrifugal force acting on the turning ship is cancelled out by forcing the inward bank. That is, the ship is configured to lower one of the flaps, or to lower one of the flaps relative to the other on the opposite side of the turning. Therefore, the ship is to operate in completely opposite manner to the present invention as described hereinafter.
INVENTION SUMMARY
The present invention has been made with the aim of solving the above problems, and it is an object of the present invention to provide a watercraft which can maintain steering capability even while amount of water ejected from a propulsion pump is decreased.
A first aspect of the present invention is characterized by a watercraft, comprising: a hull; a steering mechanism for directing the watercraft by means of moving a steering nozzle of a propulsion pump in accordance with steering operation; and a pair of steering components, each of which is disposed on the right and left side of the hull at the level of water or below the water level, which are arranged so as to change resistance of water acting on the hull, wherein at least one of said steering components is operated to be in a “First State (Operating State)” in which the resistance of water acting on the hull is increased and to be in a “Second State (Non-operating State)” in which the resistance of water acting on the hull is smaller than that of the First State.
Here, the position “at or below water level” means such a position at which a portion of the steering component(s) is at or below the water level while it is in operation. Thus, it is not necessary that a whole part of the steering component be at or below the water level.
In such a structure of the watercraft, by operating one of the steering components from the “Second State (Non-operating State)” into the “First State (Operating State),” the one of the steering components can increase the resistance of water acting on the hull of the watercraft. Therefore, either one of the right- and left-side of the steering components is operated to increase the resistance of water on the operated side so that the watercraft can be maintained in turning to a desired direction, even when the amount of water ejected from the propulsion pump is decreased.
The steering components may be used to reduce speed of the watercraft by operating both steering components from the “Second State” into the “First State.”
The steering component may be comprised of a plate-like member so as to protrude from the hull surface in such a manner that it is rotated about a supporting shaft.
Further, the steering component may be comprised of a member which is able to be recessed with respect to the hull bottom surface in the “First State.” In this configuration, the steering components can be with less resistance of water while being in the “Second State.”
Preferably, the steering component may be recessed by means of a change in pressure generated by a fluid pressure generator contained inside the watercraft.
Still further, the steering component may be comprised of a member which can be protruded substantially vertical and downward from the hull bottom surface.
Preferably, the protruding steering component is comprised of a plate-like member which is arranged such that the plate surface is along the protruding direction thereof, and which is obliquely arranged with an angle with respect to water flow direction such that it directs the watercraft toward the side at which the member is protruded. In this configuration, addition to the effect of the generation of increased resistance of water acting on the hull by the steering component in the “First State,” the steering component has an effect such as it works in a rudder-like manner, thereby helping to turn the watercraft.
The steering component may be comprised of a plate-like member which is arranged on the bottom of the watercraft so as to protrude rearward from a transom board which is rear of the hull, and so as to be changeable in the mounting angle to the bottom surface of the hull. In this configuration, the steering components can be easily assembled and maintained. Moreover, both of the steering components may be operated simultaneously so that transition from non-planing state to planing state can be smoothly carried out.
It is preferable that the watercraft is a personal watercraft wherein one of the steering components can be transformed from the “Non-operating State” into the “Operating State” in accordance with rightward or leftward operation of the steering handle disposed forward of a rider's seat of the watercraft. Therefore, the steering components make an appropriate auxiliary steering mechanism for a personal watercraft in which low weight and simplicity is usually required.
Still further, the steering component is comprised of a plate-like member which is arranged on the bottom of the hull so as to protrude rearward from a transom board which is rear end of the hull, and so as to be protrudable downwardly from the bottom surface of the hull, while a cam is rotatably provided on the transom board so as to come in contact with the rearward protruded portion of the steering component from above. The cam coordinates with the steering nozzle of the propulsion pump and pushes down the steering component to transform it from the “Second State” into the “First State.” Therefore, the steering components can be easily assembled and maintained.
Preferably, the steering component is restored into the “Second State” by a spring while the steering component is not pushed down by the cam. Therefore, less resistance of water acts on the steering component in the “Second State” while cruising.
It is preferable that an external force absorbing mechanism is provided in a system for operating the steering components. When an external force is applied on the steering component such that it makes the steering component in the “First State” transform to the “Second State,” the external force absorbing mechanism absorbs the external force to transform the steering component from the “First State” into the “Second State.”
Preferably, the external force absorbing mechanism includes the cam for operating the steering

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Watercraft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Watercraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Watercraft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.