Water treatment control system using fluorescence analyzer

Liquid purification or separation – Constituent mixture variation responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S097000, C210S198100, C210S206000, C210S908000, C073S061430

Reexamination Certificate

active

06638421

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a water treatment control system using a fluorescence analyzer, including a fluorescence analyzer, a chlorine agent injection equipment, an activated carbon injection equipment, an ozone treatment equipment, a coagulation-sedimentation equipment or a membrane filtration apparatus.
BACKGROUND ART
In a water treatment facility such as a purification plant, a precipitation treatment is carried out by introducing a ground water or surface water as a raw water to a receiving well, and adding a coagulant in a coagulation-sedimentation equipment to form flocs. Then, a settled water is passed through a sand filtration apparatus to remove suspended matters, and finally, conducted a chlorine treatment for disinfect to supply customers. In order to ensure an effect of the chlorine treatment for disinfect more reliably, a intermediate chlorination is performed in which a chlorine is injected to a sedimentation water at a prechlorination for injecting a chlorine prior to a coagulant injection point. The prechlorination is effective in removing an ammonia nitrogen and microorganisms, or oxidized-removing an iron and manganese in the raw water. With respect to a raw water having a high trihalomethane formation potential, it is preferable to adopt a intermediate chlorination for a reduction of trihalomethane.
A change-over of the individual chlorine treatments is not automatically controlled, but is operated by an operator based on his or her feeling and experience, watching the raw water quality.
When the raw water cannot be treated with the usual treatment because of a deterioration of the raw water quality, a powdered activated carbon is thrown into the receiving well or the like so that dissolved matters are absorbed in the activated carbon. The dissolved matters are removed at a subsequent coagulation-sedimentation treatment. The thrown amount of the activated carbon is neither automatically controlled, but is operated by an operator based on his or her feeling and experience, watching the raw water quality to decide the thrown amount.
In a water treatment field, specifically a water purification treatment, a chlorine treatment is prevalently used for a disinfect treatment and a removal of iron and manganese, as stated above. In the case where a trihalomethane precursor is mixed in a raw water, a trihalomethane is generated by a chlorine treatment. Since the trihalomethane is a carcinogenic substance, the generation of trihalomethane must be constrained in a water treatment process.
Currently, it is impossible to monitor in an online mode measurement of trihalomethane and trihalomethane precursor, as it takes long time and costs money. An ozone treatment and an activated carbon treatment are effective ones for removing the trihalomethane precursor. However, there are few treatment plants having an ozone treatment.
SUMMARY OF THE INVENTION
The present invention is made in view of the above disadvantages and has an object to provide a water treatment control system using a fluorescence analyzer which is capable of reducing a trihalomethane formation potential, by measuring in an online mode a relative fluorescence intensity of a raw water or a water to be treated by a fluorescence analyzer, and controlling, based on a measured value from the fluorescence analyzer, treatment processes of an activated carbon injection treatment, a chlorine agent injection treatment, an ozone injection treatment, a coagulant injection treatment, or a membrane treatment.
A water treatment control system using a fluorescence analyzer of the present invention comprises an injection mechanism for injecting an impregnating agent to a water to be treated, a fluorescence analyzer for measuring a relative fluorescence intensity of the water to be treated, a flowing water flowmeter for measuring a flow rate of the water to be treated, and a control apparatus for calculating an impregnating agent injection rate necessary to reduce a trihalomethane formation potential based on a measured value from the fluorescence analyzer to control the injection mechanism based on the impregnating agent injection rate and the flow rate from the flowing water flowmeter.
The water treatment control system using a fluorescence analyzer of the present invention, wherein the injection mechanism includes an activated carbon injector for injecting an activated carbon to the water to be treated, and wherein the control apparatus includes an activated carbon injection rate calculating apparatus for calculating an activated carbon injection rate necessary to reduce the trihalomethane formation potential based on the measured value from the fluorescence analyzer, and an activated carbon injection amount control apparatus for controlling an activated carbon injection amount from the activated carbon injector based on the flow rate from the flowing water flowmeter and the activated carbon injection rate calculated by the activated carbon injection rate calculating apparatus.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the fluorescence analyzer consists of a pair of analyzers provided on both upstream side and downstream side of the activated carbon injector, and the activated carbon injection rate calculating apparatus calculates the activated carbon injection rate based on measured values from the pair of analyzers.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the injection mechanism includes a plurality of chlorine agent injectors for injecting a chlorine agent to the water to be treated, and wherein the control apparatus includes a chlorine agent injection equipment calculation apparatus for selecting an optimum chlorine agent injector to constrain the trihalomethane formation potential based on the measured value of the fluorescence analyzer, and for calculating a chlorine agent injection rate, and a chlorine agent injection amount control apparatus for controlling a chlorine agent injection amount from the chlorine agent injector based on the flow rate from the flowing water flowmeter and the chlorine agent injection rate calculated by the chlorine agent injection equipment calculation apparatus.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the fluorescence analyzer is provided on the upstream side of the chlorine agent injectors.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the injection mechanism includes an ozone treatment equipment having a plurality of ozone tanks arranged serially, each of which has an ozone injector for injecting an ozone to the water to be treated, and wherein the control apparatus includes an ozone injection rate calculating apparatus for calculating an ozone injection rate to the respective ozone tanks necessary to reduce the trihalomethane formation potential based on a measured value of a control fluorescence analyzer, and an ozone injection amount control apparatus for controlling an ozone injection amount from the ozone injectors based on the flow rate from the flowing water flowmeter and the ozone injection rate calculated by the ozone injection rate calculating apparatus.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the fluorescence analyzer is provided in at least one of the ozone tanks.
The water treatment control system using a fluorescence analyzer according to the present invention, wherein the injection mechanism includes a coagulant injector for injecting a coagulant to the water to be treated, and wherein the control apparatus includes a coagulant injection rate calculating apparatus for calculating an optimum coagulant injection rate necessary to reduce the trihalomethane formation potential based on the measured value of the fluorescence analyzer, and a coagulant injection amount control apparatus for controlling a coagulant inj

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water treatment control system using fluorescence analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water treatment control system using fluorescence analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water treatment control system using fluorescence analyzer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3143786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.