Liquid purification or separation – Casing divided by membrane into sections having inlet – Each section having inlet
Reexamination Certificate
2001-02-13
2004-10-19
Utech, Benjamin L. (Department: 1723)
Liquid purification or separation
Casing divided by membrane into sections having inlet
Each section having inlet
C210S321750, C210S651000, C210S652000, C210S639000, C210S500370, C210S500380
Reexamination Certificate
active
06805796
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a water treatment apparatus. More particularly, the present invention relates to a water treatment apparatus suitable for converting seawater to freshwater.
2. Description of the Related Art
Seawater contains 4 to 5 mg/l of boron. Therefore, in order to obtain drinking water from seawater, the concentration of boron needs to be reduced to 1 mg/l or less. Conventionally, a two-step treatment using a composite reverse osmosis membrane has been proposed for the purpose of sufficiently reducing the concentration of boron (JP 10(1998)-305216 A, JP 8(1996)-206460 A, etc.). However, according to this treatment method, although the concentration of boron is reduced, other necessary ions are also removed. Accordingly, ions need to be added after treatment. Typically, a spiral module formed by winding a composite reverse osmosis membrane around a water-collecting pipe is used for water treatment. Conventional water treatment methods require a large number of such modules, which is economically problematic.
SUMMARY OF THE INVENTION
Therefore, with the foregoing in mind, one aspect of the present invention is to provide a water treatment apparatus for economically treating water that can sufficiently reduce boron while maintaining ions necessary for living bodies.
In order to achieve this, the water treatment apparatus according to the present invention includes a plurality of composite reverse osmosis membrane modules arranged in multi-stages, each of the modules including a porous support and a polyamide skin layer formed on the porous support, the plurality of modules including a final-stage module and at least one module preceding the final-stage module (hereinafter, referred to as “pre-final module”). The apparatus is characterized in that some permeated water obtained from the at least one pre-final module is supplied to the final-stage module, and the remaining permeated water is discharged from or recovered in the apparatus along with permeated water obtained from the final-stage module.
According to this apparatus, when raw water to be treated is seawater, a concentration of boron can be reduced while maintaining the levels of ions necessary for living bodies. In addition, the apparatus requires fewer modules.
In the apparatus according to the present invention, it is preferable that the permeated water from the final-stage module and the permeated water that is not supplied from the at least one pre-final module to the final-stage module are mixed with each other to be discharged or recovered.
In this apparatus, seawater (a TDS concentration of 4.1%, a boron concentration of 5 mg/l, a temperature of 28° C.) was supplied to the first pressure vessel from its one end at a pressure of 6.3 MPa. A recovery ratio (the amount of the permeated water/the amount of the feed water) in the first pressure vessel was 50%. In the permeated water on the raw water side (upstream) of the first pressure vessel, the concentration of boron was 0.55 mg/l and the concentration of TDS was 110 mg/l. On the other hand, in the permeated water on the concentrate side (downstream) of the first pressure vessel, the concentration of boron was 10.9 mg/l and the concentration of TDS was about 490 mg/l. Further, a volume ratio (X:Y) of the amount of the permeated water on the upstream and the amount of the permeated water on the downstream was 1:1.4. Then, the pH of the permeated water on the downstream was adjusted to 9.5 using sodium hydroxide and supplied to the second pressure vessel at a pressure of 0.8 MPa. A recovery ratio in the second pressure vessel was 85%. In the permeated water obtained from the second pressure vessel, the concentration of boron was 0.7 mg/l and the concentration of TDS was 16 mg/l. Then, the permeated water (C) on the upstream side of the first pressure vessel and the permeated water (D) obtained from the second pressure vessel were mixed with each other (mixing ratio by volume C:D=1.6:1). In the mixed water thus obtained, the concentration boron was 0.6 mg/l and the concentration of TDS was 74 mg/l. The quality of the mixed water was satisfactory for drinking water and in addition, there was no need to add ions separately.
In the apparatus according to the present invention, the permeated water supplied to the final-stage module is preferably alkaline, for example, having a pH of 8 to 12, preferably 9 to 12, and more preferably 9 to 11. The reason for this is that boron in the permeated water thus adjusted in alkaline pH is in a dissociated state and can be more easily removed.
In the apparatus according to the present invention, the permeated water supplied to the final-stage module is preferably discharged from a concentrate side of at least one module supplying the permeated water to the final-stage module. This can help an ion concentration of the permeated water discharged from or recovered in the apparatus as a whole to be more efficiently reduced.
In one example, the above-mentioned water treatment apparatus has the following structure so that the permeated water discharged from the concentrate side is supplied to the final-stage module. That is, the water treatment apparatus further includes a pressure vessel. The apparatus is characterized in that a plurality of pre-final modules are provided as the above-mentioned at least one pre-final module, each of the plurality of pre-final modules is a spiral module formed by winding a composite reverse osmosis membrane around a water-collecting pipe, the plurality of pre-final modules are connected with each other by connecting their water-collecting pipes, the plurality of pre-final modules thus connected are contained in the plurality of pressure vessels, raw water to be treated is supplied to and permeated water is discharged from one end of the pressure vessel, concentrated water and permeated water are discharged from the other end of the pressure vessel, and the permeated water discharged from the other end is supplied to the final-stage module. In the apparatus according to this example, the method for taking out the permeated water from both the end of the pressure vessel is not specifically limited. For example, an amount of the permeated water may be adjusted by bulbs provided in outlet pipes at both the ends of the pressure vessel. Further, an interior space of the connected water-collecting pipes may be divide into two separate spaces by a partition to separate permeated water on a raw water side and permeated water on a concentrate side. In this case, the volume ratio (X:Y) of the amount of the permeated water on the raw water side (upstream) and the amount of the permeated water on the concentrate side (downstream) is in the range of, for example, 1:5 to 9:1, preferably 1:1.5 to 9:1, and more preferably 1:1 to 4:1.
In another example, the water treatment apparatus has the following structure so that the permeated water discharged from the concentrate side is supplied to the final-stage module. That is, the water treatment apparatus further includes a plurality of pressure vessels arranged in multi-stages, the plurality of pressure vessels including a first-stage pressure vessel and at least one pressure vessel subsequent to the first-stage pressure vessel. The apparatus is characterized in that a plurality of pre-final modules are provided as the above-mentioned at least one pre-final module, each of the plurality of pre-final modules is a spiral module formed by winding a composite reverse osmosis membrane around a water-collecting pipe, the plurality of pre-final modules are connected with each other by connecting their water-collecting pipes, the plurality of pre-final modules thus connected are contained in the pressure vessel, the first-stage pressure vessel is supplied with raw water to be treated, the at least one pressure vessel subsequent to the first-stage pressure vessel is supplied with concentrated water discharged from at least one preceding pressure vessel, and the final-stage module is supplied with permeate
Hiro Atsushi
Hirose Masahiko
Wilf Mark
Menon K S
Nitto Denko Corporation
Osha & May L.L.P.
Utech Benjamin L.
LandOfFree
Water treatment apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Water treatment apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water treatment apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3264394