Water-stabilized organosilane compounds and methods for...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S025000, C528S038000, C106S014110, C106S287160, C536S056000, C536S084000, C536S111000, C536S123100, C427S382000

Reexamination Certificate

active

06469120

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention:
The invention relates to organosilane compounds, products and methods for their use. In particular, this invention provides water-stable organosilane compounds, products, and compositions for treating various substrates, articles treated with the compounds, products and compositions, and methods of treatment using the compounds, products and compositions.
2. Background:
Organosilanes of the general formula RnSiX4-n where n is an integer of from 0 to 3, but more generally from 0 to 2 (where when n is 3 the organosilanes may only dimerize); R is a organic group, such as, but not limited to, alkyl, aromatic, organofunctional, or a combination thereof, and X is alkoxy, such as methoxy or ethoxy, are prone to self-condensation rendering such organosilanes unstable in water over commercially relevant periods of time. Additionally, X can be a halogen, such as Cl, Br, or I and is similarly liberated as HCl, HBr, or HI. For such organosilanes, the X moiety reacts with various hydroxyl containing molecules in aqueous media to liberate methanol, ethanol, HCl, HBr, HI, H
2
O, acetic acid, or an unsubstituted or substituted carboxylic acid and to form the hydroxylated, but condensation-prone compound.
For organosilanes R
n
SiX
4−n
, where n is an integer from 0 to 2, hydrolysis of the first two X groups with water produces a species bearing —Si(OH)
2
— units which can self-condense through the hydroxyl moieties to linear and/or cyclic oligomers possessing the partial structure HO—Si—(O—Si)
mm
—O—Si—O—Si—O—Si—OH, where mm is an integer such that an oligomer is formed. For those cases, RSiX
3
, hydrolysis of the third X group generates a silanetriol (RSi(OH)
3
) which produces insoluble organosilicon polymers through linear and/or cyclic self-condensation of the Si(OH) units. This water induced self-condensation generally precludes storage of most organosilanes R
n
SiX
4−n
, where n ranges from 0 to 2, inclusive, in water. Except for some organosilanes which can be stable in very dilute solutions at specific pH ranges, the use of water solutions of most organosilanes require the use of freshly prepared solutions.
One commercially relevant example of an organosilane suffering from such undesirable self-condensation is the antimicrobial Dow Corning 5700 (Dow Corning Corporation, Midland, Mich.). The literature describes the active ingredient of Dow Corning 5700 as 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride. However, in aqueous media, it is believed that the correct active ingredient is more likely 3-(trihydroxysilyl)propyl-dimethyloctadecyl ammonium chloride. Nonetheless, 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride is a water activated antimicrobial integrated system which is capable of binding to a wide variety of natural and synthetic substrates, including fibers and fabrics, to produce a durable surface or fabric coating. 3-(Trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride is prepared by quaternization of dimethyloctadecylamine with 3-chloropropyl trimethoxysilane.
The C
18
hydrocarbonchain quaternary ammonium portion of the molecule possesses long-acting antimicrobial properties and provides initial association with the surface of the substrate through electrostatic interaction. Preferably, the treated surface becomes permanently coated with a covalently bound octadecylammonium ion, providing a durable, long-acting antimicrobial coating that is able to destroy microbes that come into contact with the surface.
Unfortunately, as noted above, organosilanes in water, such as the activated mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecy ammonium chloride and water, are generally unstable and prone to self-condensation. For instance, the mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride and water begins to lose effectiveness in as little as four to eight hours. Gel formation in this and similar silane formulations in water begins to occur in even shorter times. The limitations of such organosilanes in aqueous media are further described in U.S. Pat. No. 5,411,585, the contents of which are hereby incorporated by this reference. Moreover, such products are notorious for agitation difficulty during the addition of the silane to water. Nevertheless, according to the present invention, clear aqueous gels are considered to be useful compositions.
The use of ammonium silicon compounds as antimicrobial agents in accordance with the prior art is well known and taught in a wide variety of U.S. Pat., Nos. e.g., 3,560,385; 3,794,736; 3,814,739, the contents of which are hereby incorporated by this reference. It is also taught that these compounds possess certain antimicrobial properties which make them valuable and very useful for a variety of surfaces, substrates, instruments and applications (see, e.g., U.S. Pat. Nos. 3,730,701; 3,794,736; 3,860,709; 4,282,366; 4,504,541; 4,615,937; 4,692,374; 4,408,996; and 4,414,268, the contents of which are hereby incorporated by this reference). While these quaternary ammonium silicon compounds have been employed to sterilize or disinfect many surfaces, their employment is still limited because of their toxicity often as a result of the solvent system used to deliver the compound, the necessity for a solvent solution (for instance, Dow Corning antimicrobial agents contain 50% methanol), short term stability (stability of aqueous silane solutions varies from hours to several weeks only) and poor water solubility. For instance, while 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride does not suffer from insolubility, it is unstable in water and also, because it is shipped in 50% methanol, it is overly toxic. Many other antimicrobial organosilanes, especially quaternary ammonium silicon compounds, also suffer from problems associated with physical health hazards, e.g., precautions must be taken to avoid contact with both skin and eyes, accidental spills to the surrounding area, flammability, and the added manufacturing steps needed in order to incorporate the such antimicrobial agents into other articles and surfaces, resulting in much higher manufacturing costs.
Therefore, there exists a need for extended shelf-life, water-stable organosilane compounds, products and compositions whereby, upon application, the active portion of the organosilane is operative for the selected application. Moreover, there exists a need for water-stable, organosilane compounds, products and compositions which are essentially non-toxic, non-flammable, uniformly dispersable, and simple and economical to use.
In Provisional Application Serial No. 60/016,985, a method for producing water stable organosilane solutions and compositions is disclosed. According to that invention, stabilization is achieved by reacting the organosilane with a polyol containing at least three hydroxy groups, wherein any two hydroxy groups are separated by at least three intervening atoms. The archetypal example of such a polyol disclosed in that application being pentaerythrytol.
In the instant application, we disclose the finding that compounds having at least two hydroxy groups stabilize aqueous organosilane solutions, even though there are less than three atoms separating at least two of the hydroxyl groups that are present in the polyol. The archetypal example of polyols of the instant invention being glucose, wherein there are several hydroxy groups, several of which are separated by no more than two intervening atoms. According, this invention provides for a much expanded scope of hydroxy containing compounds useful in the stabilization of organosilane compounds.
BRIEF SUMMARY OF THE INVENTION
The present invention fulfills these needs by providing water-stable organosilane compounds, products (i.e., the compounds or compositions formed from performing a specified reaction) and compositions, methods for their use, and articles prepared using the compounds, products, and compositions. The compounds, products, and compositions of the present are toxic, flamm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water-stabilized organosilane compounds and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water-stabilized organosilane compounds and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water-stabilized organosilane compounds and methods for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3000126

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.