Water soluble palladium complexes and process for the...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S005000, C546S007000, C556S023000

Reexamination Certificate

active

06469169

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel water-soluble palladium complexes and a process for the preparation thereof More particularly, the present invention relates to a water soluble palladium complex of the general formula 1,
being an anionic chelating ligand containing an N donor and a O

group, wherein R
1
, R
2
and R
3
are substituents of phosphine ligand at least one of which carries a sulfonic acid or salt there of and X is a sulfonato, carboxylato or formato group, or any of the halides; a process for the preparation thereof and supported aqueous phase catalysts thereof The water soluble palladium complexes and supported aqueous phase catalysts prepared by the process of the present invention are useful as efficient catalysts for reactions such as carbonylation, oxidation, hydrogenation, coupling, alkylation, oligomerization, polymerisation etc.
BACKGROUND OF THE INVENTION
Water-soluble palladium complexes play an important role as catalysts for several organic transformations. One method in which such water-soluble catalysts can be used is in biphasic systems; comprising the water soluble organometallic complex catalyst in aqueous phase and the organic reactants and products as a water immiscible phase; thereby providing easy separation and reuse of the,catalyst owing to the immiscibility of the catalyst phase with the organic substrates and products (U.S. Pat. No. 31812; Kuntz E.G. CHEMTECH 17, 1987, 570; EP 0107006; B. Cornils, W. A. Herrmann (Eds.), Aqueous-Phase Organometallic Catalysis, Wiley-VCH, 1998, Weinheim.) Another approach is as supported aqueous phase catalysts (U.S. Pat. No. 5,736,980, U.S. Pat. No. 5,935,892) in which the catalytic material consists of a thin aqueous film containing the water-soluble metal complex catalyst spread over a high-surface-area inorganic support, such as silica (J. P. Arhancet, M. E. Davis, J. S. Merola, Be. Hanson, Nature, 339, 1989, 454; K. T. Wan, M. E. Davis, Nature, 370, 1994, 449; KIT. Wan, M. E. Davis, J. Catal., 148, 1994, 1).
U.S. Pat. No. 6,069,253 discloses the preparation of an anionic chelating. ligand containing a N donor and O

group.
OBJECTS OF THE INVENTION
The main object of the present invention is to provide novel water-soluble palladium complexes and supported aqueous phase catalysts thereof that areuseful catalysts for a variety of organic transformations such as carbonylation, oxidation, hydrogenation, coupling, alkylation, oligomerization, polymerisation etc.
It is another object of the invention to provide a process for the preparation of novel water soluble palladium complexes that are useful as catalysts for a variety of organic transformations.
SUMMARY OF THE INVENTION
The present invention also relates to a process for the preparation of water soluble palladium complexes having general formula I,
wherein R
1
, R
2
, and R
3
are substituents on phosphine ligands selected from the group consisting of hydrogen, alkyl, arylakyl, and cycloaliphatic at least one of which carries a sulfonic acid, and salts thereof, X is aryl or alkyl sulphonato or aryl or alkyl carboxylato or formato or halide such as Cl

, Br

, or I

, N∩O is an anionic chelating ligand consisting of an N donor and a O

group, and 1<n<10, said process comprising reacting a palladium compound of formula II
wherein R′
1
, R′
2
, and R′
3
are substituents on phosphine ligands such as, alkyl, aryl, arylalkyl, or cycloaliphatic, X is aryl or alkyl sulphonato or aryl or alkyl carboxylato or formato or halides such as Cl

, Br

, I

,
is an anionic chelating ligand containing a N donor and O

group, in an organic solvent with a sulfonated phosphine ligand in degassed water to form the palladium complex of formula I in water, separating the aqueous layer and precipitating the complex of formula I by adding an alcohol solvent.
In one embodiment of the invention, the precipitated complex of formula I is converted into the supported aqueous phase form by mixing the aqueous layer containing the water soluble palladium complex of formula I with dehydroxylated silica in a Schlenk flask, forming a wet solid, stirring the wet solid vigorously for 2 h under argon, evaporating water under high vacuum at constant stirring to obtain the supported aqueous phase catalyst containing the palladium complex of the formula I as a dry yellow powder.
In another embodiment of the invention, the anionic chelating ligand in the compounds of formula I and II is an organic compound, containing a N donor and an O

group selected from the group consisting of 8-hydroxy quinoline, 2-hydroxy pyridine, 2-(2-hydroxy ethyl)pyridine, pyridyl-2-, piperidyl-2-, quinolyl-2-, isoquinolyl-1- and isoquinolyl-3-carboxylates, particulaly pyridyl-2-carboxylate, piperidyl-2 carboxylate, and 8-hydroxyquinoline.
In another embodiment of the invention, the sulfonated phosphorous ligand in the compound of formula I is a sulfonated mono phosphine.
In a further embodiment of the invention, the sulfonated phosporous ligand is selected from the group consisting of tris(sodium-3-sulfonatophenyl)phosphine(TPPTS), phenyl bis(sodium-3-sulfonatophenyl)phosphine(TPPDS), diphenyl(sodium-3-sulfonatophenyl) phosphine(TPPMS), methylbis(3-sulfonatophenyl)phosphine, cyclohexylbis(sodium-3-sulfonato phenyl)phosphine, isopropylbis(sodium-3-sulfonatophenyl)phosphine, dimethyl (sodium-3-sulfonatophenyl) phosphine, dicyclohexyl-(3-sulfonatophenyl)phosphine.
In another embodiment of the invention, the amount of the sulfonated phosphine ligand used per gram mole of palladium for the preparation of the palladium complex of formula I is 1-10 moles, preferably 2-3 moles.
In still another embodiment the organic solvent used for the preparation of the palladium complex of formula I is selected from the group consisting of chloroform, dichloromethane and methyl ethyl ketone.
In still another embodiment the alcohol solvent used for the precipitation of the palladium complex of formula I from the aqueous layer is selected from methanol and ethanol.
In another embodiment the silica used for the preparation of the supported aqueous phase catalyst containing the complex of formula I is selected from porous or non-porous silica.
In another embodiment the silica for the preparation of the supported aqueous phase catalyst containing the complex of formula I is preferably dehydroxylated by heating at 523 K under vacuum for 5-6 hours.
DETAILED DESCRIPTION OF THE INVENTION
Although many water soluble palladium complexes have been reported in the literature, the water soluble complex having the formula I and the corresponding supported aqueous phase catalysts have been synthesised for the first time and there is no prior art available for synthesising these complexes and supported aqueous phase catalysts thereof.


REFERENCES:
patent: 6069253 (2000-05-01), Chaudhari et al.
Okunaka et al, Bull. Chem. Soc. Japan, vol. 50, No. 4 p. 907-909, 1977.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water soluble palladium complexes and process for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water soluble palladium complexes and process for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water soluble palladium complexes and process for the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2923809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.