Water-soluble fluorescent nanocrystals

Compositions – Inorganic luminescent compositions – Compositions containing halogen; e.g. – halides and oxyhalides

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S30140S, C252S30160R, C252S30160S, C428S690000, C428S403000, C428S407000

Reexamination Certificate

active

06251303

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to water-soluble nanocrystalline materials that emit energy over a narrow range of wavelengths. In particular, the invention relates to water-soluble nanocrystals that emit light in the visible energy range.
BACKGROUND OF THE INVENTION
Semiconductor nanocrystals (quantum dots) whose radii are smaller than the bulk exciton Bohr radius constitute a class of materials intermediate between molecular and bulk forms of matter. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective band gap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of quantum dots shift to the blue (higher energies) as the size of the dots gets smaller.
Bawendi and co-workers have described a method of preparing monodisperse semiconductor nanocrystals by pyrolysis of organometallic reagents injected into a hot coordinating solvent (
J. Am. Chem. Soc
., 115:8706 (1993)). This permits temporally discrete nucleation and results in the controlled growth of macroscopic quantities of nanocrystals. Size selective precipitation of the crystallites from the growth solution can provides crystallites with even narrower size distributions. The narrow size distribution of the quantum dots allows the possibility of light emission in narrow spectral widths.
In an effort to improve the photoluminescent yield of the quantum dots, the nanocrystal surface has been passivated by reaction of the surface atoms of the quantum dots with organic passivating ligands, so as to eliminate energy levels at the surface of the crystallite which lie within the energetically forbidden gap of the bulk interior. These surface energy states act as traps for electrons and holes which degrade the luminescence properties of the material. Such passivation produces an atomically abrupt increase in the chemical potential at the interface of the semiconductor and passivating layer (See, A. P. Alivisatos,
J. Phys. Chem.
100:13226 (1996)). Bawendi et al. (
J. Am. Chem. Soc.
115:8706 (1993)) describe CdSe nanocrystals capped with organic moieties such as tri-n-octyl phosphine (TOP) and tri-n-octyl phosphine oxide (TOPO) with quantum yields as high as 20% in organic solvents such as toluene. See also, thesis of Christopher Murray, “Synthesis and Characterization of II-VI Quantum Dots and Their Assembly into 3-D Quantum Dot Superlattices”, Massachusetts Institute of Technology, September, 1995; and Kuno et al. (
J. Phys. Chem.
106(23):9869 (June, 1997)).
Although semiconductor nanocrystals prepared as described by Bawendi and co-workers exhibit near monodispersity, and hence, high color selectivity, the luminescence properties of the material is process dependent. The stability of the photoluminescent property of the nanocrystal is a function of the nature of the passivating species coating the outer surface of the nanocrystal. Known organically coated nanocrystals are not robust and exhibit degradation of photoluminescent yield in solution. This is likely due to dissociation of the passivating layer from the surface of the quantum dot or degradation of the passivating layer resulting in degradation of the semiconductor surface.
Passivation of quantum dots using inorganic materials also has been reported. Particles passivated with an inorganic coating are more robust than organically passivated dots and have greater tolerance to processing conditions necessary for their incorporation into devices. Previously reported inorganically passivated quantum dot structures include CdS-capped CdSe and CdSe-capped CdS (Than et al.,
J. Phys. Chem.
100:8927 (1996)); ZnS grown on CdS (Youn et al.,
J. Phys. Chem.
92:6320 (1988)); ZnS on CdSe and the inverse structure (Kortan et al.,
J. Am. Chem. Soc.
112:1327 (1990)); ZnS-capped CdSe nanocrystals (M. A. Hines and P. Guyot-Sionnest,
J. Phys. Chem.
100:468 (1996); ZnSe-capped CdSe nanocrystals (Danek et al.,
Chem. Materials
8:173 (1996) and SiO
2
on Si (Wilson et al.,
Science
262:1242 (1993)).
Kortan et al. describes a ZnS capped-CdSe quantum dot which has a layer of thiolphenyl groups bound to the outer surface. The thiolphenyl groups were used to passivate the surface and to allow the clusters to be isolated in powder form. Lawless et al. reported the preparation of CdS semiconductor nanocrystals capped with bifunctional mercaptocarboxylic acids HS(CH
2
)
n
COOH, where n=1-3. TiO
2
particles were attached to the CdS dots through the functional carboxylic acid group of the bifunctional capping moiety in order to promote interparticle electron transfer between dissimilar semiconductor particles.
The quantum dots described above are soluble or dispersible only in organic solvents, such as hexane or pyridine. Many applications which rely on the fluorescent emission of the quantum dots require that the quantum dots be water-soluble.
Many reported water-soluble quantum dots suffer from significant disadvantages which limit their wide applicability. For example, Spanhel et al. discloses a Cd(OH)
2
-capped CdS sol (
J. Am. Chem. Soc.
109:5649 (1987)); however, the photoluminescent properties of the sol was pH dependent. The sol could be prepared only in a very narrow pH range (pH 8-10) and exhibited a narrow fluorescence band only at a pH of greater than 10. Such pH dependency greatly limits the usefulness of the material; in particular, it is not appropriate for use in biological systems.
Other groups have replaced the organic passivating layer of the quantum dot with water-soluble moieties; however, the resultant derivatized quantum dots are not highly luminescent. Short chain thiols such as 2-mercaptoethanol and 1-thio-glycerol have been used as stabilizers in the preparation of water-soluble CdTe nanocrystals. See, Rogach et al.,
Ber. Bunsenges. Phys. Chem.
100:1772 (November, 1996) and Rajh et al.,
J. Phys. Chem.
97:11999 (November 1993). Other more exotic capping compounds have been reported with similar results. See, Coffer et al. (
Nanotechnology
3:69 (April, 1992) which describes the use of deoxyribonucleic acid (DNA) as a capping compound. In all of these systems, the coated quantum dots were not stable and photoluminescent properties degraded with time.
The unavailability of aqueous suspensions or solutions of quantum dots with sharp photoluminescent emissions limits their application in a variety of water-based applications, such as biological applications. In addition, aqueous solutions can often be very aggressive chemical systems and many of the known water-soluble quantum dots systems degrade, mainly by photoanodic decomposition at the semiconductor surface interface, during long exposure times in water. Thus there remains a need for water-soluble semiconductor nanocrystals which may be prepared as stable, robust suspensions or solutions in aqueous media. There is also a need for water-soluble quantum dots capable of energy emission with high quantum efficiencies, which possess a narrow particle size (and hence with narrow photoluminescence spectral range).
It is the object of the invention to provide water-soluble semiconductor nanocrystals (quantum dots) which overcome the limitations of the prior art and which exhibit high quantum yields with photoluminescence emissions of high spectral purity.
It is yet a further object of the present invention to provide a quantum dot which is readily soluble in aqueous systems and demonstrates chemical and electronic stability therein.
It is yet a further object of the invention to provide a water-soluble quantum dot derivatized to provide linking or coupling capability.
SUMMARY OF THE INVENTION
In one aspect of the invention, a water-soluble semiconductor nanocrystal capable of energy emission is provided. The nanocrystal includes a quantum dot having a selected band gap energy overcoated with a layer of a material having a band gap energy greater than that of the quantum dot and with appropriate band offsets. An outer layer is found at the outer surface of the overcoating layer. The out

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water-soluble fluorescent nanocrystals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water-soluble fluorescent nanocrystals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water-soluble fluorescent nanocrystals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2504034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.