Animal husbandry – Watering or liquid feed device
Reexamination Certificate
2001-12-18
2004-03-30
Price, Thomas (Department: 3643)
Animal husbandry
Watering or liquid feed device
Reexamination Certificate
active
06712021
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
This invention relates to a water pressure regulator, and in particular, to a water regulator for use in a drinking system in a poultry house which allows for the water regulator, and the drinking system of the poultry house, to be switched between a low pressure operational mode and a higher pressure flushing mode.
Drinking or watering systems for poultry houses are supplied with water at relatively high line pressure (e.g., 30-60 psi). The water is delivered at lower pressure to a watering line extending the length of a poultry house or the like. The watering line has a series of spaced apart watering stations or drinkers therealong at which birds can get water by pecking at a movable pin or lever. One such watering station is shown for example in U.S. Pat. Nos. 5,522,346 and 5,074,250, both to Clark. For the drinkers to operate properly, the water pressure in the watering line must be reduced to only a few inches of water (i.e., less than 6″-12″ of H
2
O). Typically, in order to reduce the water pressure, the water passes though a regulator before entering the water line which leads to the drinking stations.
The water in the drinking system may be hard well water. That is, it may contain minerals and solid particles which settle or precipitate out in the pipes and the regulator. Additionally, the chickens are provided with medication and nutritional supplements (such as vitamins) through the water. These supplements can also settle out or be deposited in the drinking system. Thus, it is advantageous that the drinking system be flushed out periodically to prevent the various minerals and particles from accumulating in the regulator and drinking stations, and thus possibly interfering with the operation of the regulator and the drinking stations.
In a typical regulator, the regulator includes a first port which is used to regulate water pressure and a second port which is opened to flush out the drinking system. This second port can be either an internal or external bypass, or simply a second port in the inlet pipe. For example U.S. Pat. No. 5,771,921 to Johnson discloses a complex system to isolate the diaphragm of the regulator from the higher pressure water by directing high-pressure flushing water through a different port than the low pressure water passes.
U.S. Pat. No. 4,991,621 to Steudler, Jr. discloses flushing of the watering system by uncoupling the supply hose from the water inlet, and reconnecting it to the regulator's standpipe. This is another way of using a second port to by-pass the valving mechanism which controls the pressure in the watering system. Additionally, the need to uncouple the supply line from the inlet to connect it the stand pipe to flush the system, and then to uncouple the supply line from the stand pipe to reconnect the supply line to the inlet is time consuming. As can be appreciated, when the second port is closed, the water is directed through the first port, and the water pressure is regulated down to the desired pressure. When the second port is opened, the water enters the drinking system at line pressure, and the higher water pressure will flush the system out.
The use of two-port systems creates several problems. First, it adds complexity to the manufacture of the regulator. Second, it requires multiple sets of seals, which will degrade over time. Hence, maintenance costs are increased due to the use of the second port.
U.S. Pat. No. 5,429,072 to Schumacher discloses a water pressure reducer or regulator with a valve in the water inlet which when opened allows line pressure to flow through a second opening so as to by-pass the regulator valve. Thus, full line pressure will flow through the regulator and the watering line thereby to flush these components.
Another shortcoming of the known prior art regulators is the manner in which they are suspended from the roof rafters within a poultry house. As previously described, a poultry watering system includes a watering pipe having a series of spaced drinkers spaced along its length. This watering pipe, which may be several hundred feet in length, has, at spaced intervals along its length (e.g., 6-10 feet), cables suspending the watering pipe from a winch arrangement. In order to stabilize and to stiffen the water pipe, a stabilizing or stiffening tube (or other stiffening member) is vertically spaced above the watering tube and is fastened (clamped) to the watering pipe. With prior art water regulators, such as shown in U.S. Pat. No. 5,070,903 to Steudler, the stabilizing pipe is clamped to the housing of the regulator. This, however, makes it difficult to remove the regulator from the watering system.
BRIEF SUMMARY OF THE INVENTION
Briefly stated, a pressure regulator of the present invention for a drinking system for poultry or other animals includes a water supply line, the regulator, and a watering pipe with drinking stations positioned therealong. The pressure regulator includes a housing having a chamber therewithin which is divided into a water chamber and an ambient chamber by a flexible diaphragm sealed with respect to the housing. A spring is carried by the housing in operable engagement with the diaphragm such that the force of the spring and the force of the atmosphere in the ambient chamber act upon the diaphragm to force the diaphragm toward the water chamber. The housing has a water inlet adapted to be connected to a supply line and an outlet adapted to be connected to the watering pipe. Importantly, the inlet has a single inlet port through which water enters the water chamber. A valve is carried by the housing and is operatively associated with the diaphragm for movement between a closed position in which the valve blocks the flow of water from the inlet port into the water chamber and an open position in which water is permitted to flow from the inlet port into the water chamber such that the force of the spring acting on the atmosphere side of the diaphragm balances the force exerted on the water side of the diaphragm thereby to regulate the pressure of the water in the water chamber and within the watering pipe to a predetermined water pressure substantially less than the pressure of the water supply.
The regulator of the present invention can be switched between an operating mode in which the water pressure in the watering pipe is regulated to a predetermined low operating pressure, and a flushing mode in which water at full line pressure passes through the regulator and the watering system to flush out the regulator and watering system. The regulator is switched between the two modes by altering the positions of the inlet port and the valve member relative to each other. Preferably, the water inlet port is movable relative to the regulator housing between an operating mode in which the valve member is cooperable with the inlet port so as to open and block the inlet port and a flushing mode in which the valve member is clear of the inlet port. In a preferred embodiment, the water inlet is a tube movable relative to the housing between its operating and flushing modes by means of a lever and cover arrangement. The tube can also be moved axially via rotation of the tube in which the tube and a sleeve on the housing in which the tube is received include a pin and spiral groove or track. Rotation of the tube will cause the pin to move along the track (or vice versa) and cause the tube to move axially relative to the housing to a position in which it may not be sealingly engaged by the valve member.
The diaphragm of the regulator is supported to prevent the diaphragm from extending into the lower or ambient chamber of the regulator. Hence, the diaphragm cannot be flexed to a concave shape (relative to the water chamber). The regulator includes a stop in the ambient chamber which prevents the diaphragm from extending into the ambient chamber. Importantly, the support supports the diaphragm when
Polster Lieder Woodruff & Lucchesi L.C.
Price Thomas
The GSI Group, Inc.
LandOfFree
Water pressure regulator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Water pressure regulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water pressure regulator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3215913