Motor vehicles – Special wheel base
Reexamination Certificate
2002-03-29
2004-06-01
Dunn, David (Department: 3616)
Motor vehicles
Special wheel base
C301S127000
Reexamination Certificate
active
06742613
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to methods and apparatus for propelling automated or robotic swimming pool and tank cleaners and for controlling the scanning or traversing patterns of the automated cleaners with respect to the bottom and sidewalls of the pool or tank.
BACKGROUND OF THE INVENTION
Automated or robotic swimming pool cleaners traditionally contact and move about on the pool surfaces being cleaned on axle-mounted wheels or on endless tracks that are powered by a separate drive motor through a gear train. The wheels or tracks are aligned with the longitudinal axis of the cleaner. Swimming pool cleaning robots that move on wheels generally have two electric motors—a pump motor powers a water pump that is used to dislodge and/or vacuum debris up into a filter; the drive motor is used to propel the robot over the surfaces of the pool that are to be cleaned. The drive motor can be connected through a gear train directly to one or more wheels or axles, or through a belt and pulleys to propel the cleaner; or to a water pump, which can be external to the robotic cleaner that produces a pressurized stream, or water jet, that moves the cleaning apparatus by reactive force or by driving a water turbine connected via a gear train to the wheels or endless track. The movement of the pool cleaners of the prior art, when powered by either the turbine or the direct or reactive jet is in one direction and the movement is random.
Control of the longitudinal directional movement of the robot can be accomplished by elaborate electronic circuitry, as is the case when stepper and D.C. brushless motors are employed. Other control systems require the cleaner to climb the vertical sidewall of the pool until a portion of the cleaner extends above the waterline and/or the unit has moved laterally along the sidewall, after which the motor drive reverses and the cleaner returns to the bottom surface of the pool along a different path. The water powered cleaners of the prior art also rely on the reorientation of the cleaner while on contact with the wall to effect a random change in direction. However, under certain circumstances; it is a waste of time, energy and produces unnecessary wear and tear to have the robotic cleaner climb the sidewall solely for purpose of changing the pattern of movement of the cleaner.
It is known from U.S. Pat. No. 2,988,762 to provide laterally offset fixed bumper elements at each end of the cleaner to contact the facing sidewall and provide a pivot point as the cleaner approaches the wall. Another transverse slide rod can be provided to contact a side wall and causes the drive motor to reverse. The bumper elements are adjustable to provide variable angles. A third slide rod attached to a shut-off switch extends outboard of side facing the far end of the pool, so that when the cleaner has covered the entire length of the pool and approaches the wall is a generally parallel path, the third slide rod is pushed inboard and shuts off power to the unit.
It has also been proposed to direct the scanning movement of a pool cleaner mechanically by use of a three-wheeled array in which the third wheel is mounted centrally and opposite the other pair of wheels, and the axle upon which the third wheel is mounted is able to rotate in a horizontal plane around a vertical axis. A so-called free-wheeling version of this apparatus is shown on U.S. Pat. No. 3,979,788.
In U.S. Pat. No. 3,229,315, the third wheel is mounted in a plate and the plate is engaged by a gear mechanism that positively rotates the horizontal axle and determines the directional changes in the orientation of the third wheel.
It is also known in the prior art to provide a pool cleaner with a vertical plunger or piston that can be moved by a hydraulic force into contact with the bottom of the pool to cause the cleaner to pivot and change direction. The timing must be controlled by a preprogrammed integrated circuit (“IC”) device.
It is also known from U.S. Pat. No. 4,348,192 to equip the feed water hose of a circular floating pool cleaning device with a continuous discharge water jet nozzle that randomly reorients itself to a reversing direction when the forward movement of the floating cleaner is impeded. In addition to the movable water jet discharge nozzle attached to the underside of the floating cleaner, the hose is equipped with a plurality of rearwardly-facing jet nozzles that move the water those in a random pattern and facilitate movement of the cleaner.
Commercial pool cleaners of the prior art that employ pressurized water to effect random movement have also been equipped with so-called “back-up” valves that periodically interrupt and divert the flow of water to the cleaner and discharge it through a valve that has jets facing upstream, thereby creating a reactive force to move the hose and, perhaps, the attached cleaner in a generally backward direction. The back-up valve can be actuated by the flow of water through a fitting attached to the hose. The movement resulting from the activation of the back-up valve jets is also random and may have no effect on reorienting a cleaner that has become immobilized.
The apparatus of the prior art for use in propelling and directing the scanning movement of automated robotic pool cleaners is lacking in several important aspects. For example, the present state-of-the-art machines employ pre-programmed integrated circuit (“IC”) devices that provide a specific predetermined scanning pattern. The design and production of these IC devices is relatively expensive and the scanning patterns produced have been found to be ineffective in pools having irregular configurations and/or obstructions built into their bottoms or sidewalls.
Cleaners propelled by a water jet discharge move only in a generally forward direct, and their movement is random, such randomness being accentuated by equipping the unit with a flexible hose or tail that whips about erratically to alter the direction of the cleaner.
Cleaners equipped with gear trains for driving wheels or endless tracks represent an additional expense in the design, manufacture and assembly of numerous small, precision-fit parts; the owner or operator of the apparatus will also incur the time and expense of maintaining and securing replacement parts due to wear and tear during the life of the machine. A cleaning apparatus constructed with a pivotable third wheel that operates in a random fashion or in accordance with a program has the same drawbacks associated with the production, assembly and maintenance of numerous small moving parts.
The robotic pool cleaners of the prior art are also lacking in mechanical control means for the on-site adjustment of the scanning patterns of the apparatus with respect to the specific configuration of the pool being cleaned.
Another significant deficiency in the design and operation of the pool cleaners of the prior art is their tendency to become immobilized, e.g., in sharp corners, on steps, or even in the skimmer intake openings at the surface of the pool.
It is therefore a principal object of this invention to provide an improved automated or robotic pool and tank cleaning apparatus that incorporates a reliable mechanism and method of providing propulsion using a directional water jet for moving the cleaner in opposite directions along, or with respect to, the longitudinal axis of the apparatus.
It is another object of this invention to provide a method and apparatus for adjustably varying the direction of, and the amount of thrust or force produced by a water jet employed to propel a pool or tank cleaning apparatus, and to effect change in direction by interrupting the flow of water.
It is another important object of the invention to provide a simple and reliable apparatus and method for adjustably controlling the direction of discharge of a propelling water jet that can be utilized by home owners and pool maintenance personnel at the pool site to attain proper scanning patterns in order to clean the entire submerged bottom and side wall surfaces of the pool, regardless of
Erlich Giora
Horvath Tibor
Abelman ,Frayne & Schwab
Aqua Products Inc.
Dunn David
LandOfFree
Water jet reversing propulsion and directional controls for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Water jet reversing propulsion and directional controls for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water jet reversing propulsion and directional controls for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3299666